Increasing axial parenchyma fraction in the Malagasy Magnoliids facilitated the co-optimisation of hydraulic efficiency and safety

© 2020 The Authors New Phytologist © 2020 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 229(2021), 3 vom: 30. Feb., Seite 1467-1480
1. Verfasser: Aritsara, Amy Ny Aina (VerfasserIn)
Weitere Verfasser: Razakandraibe, Vonjisoa M, Ramananantoandro, Tahiana, Gleason, Sean M, Cao, Kun-Fang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't axial parenchyma axial parenchyma arrangement basal angiosperms hydraulic safety efficiency trade-off magnoliids ray parenchyma Water 059QF0KO0R
Beschreibung
Zusammenfassung:© 2020 The Authors New Phytologist © 2020 New Phytologist Foundation.
The evolution of angiosperms was accompanied by the segregation and specialisation of their xylem tissues. This study aimed to determine whether the fraction and arrangement of parenchyma tissue influence the hydraulic efficiency-safety trade-off in the basal angiosperms. We examined xylem anatomical structure and hydraulic functioning of 28 woody species of Magnoliids in a tropical rainforest of Madagascar and reported, for the first time, quantitative measurements that support the relationship between vessel-to-xylem parenchyma connectivity and the hydraulic efficiency-safety trade-off. We also introduced a new measurement - the distance of species from the trade-off limit - to quantify the co-optimisation of hydraulic efficiency and safety. Although the basal angiosperms in this study had low hydraulic conductivity and safety, species with higher axial parenchyma fraction (APf) had significantly higher hydraulic conductivity. Hydraulic efficiency-safety optimisation was accompanied by higher APf and vessel-to-axial parenchyma connectivity. Conversely, species exhibiting high ray parenchyma fraction and high vessel-to-ray connectivity had lower Ks and were further away from the hydraulic trade-off limit line. Our results provide evidence that axial parenchyma fraction and paratracheal arrangement are associated with both enhanced hydraulic efficiency and safety
Beschreibung:Date Completed 14.05.2021
Date Revised 14.05.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.16969