Long-term active restoration of extremely degraded alpine grassland accelerated turnover and increased stability of soil carbon

© 2020 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 26(2020), 12 vom: 15. Dez., Seite 7217-7228
1. Verfasser: Bai, Yanfu (VerfasserIn)
Weitere Verfasser: Ma, Lina, Degen, Abraham A, Rafiq, Muhammad K, Kuzyakov, Yakov, Zhao, Jingxue, Zhang, Rui, Zhang, Tao, Wang, Wenyin, Li, Xiaogang, Long, Ruijun, Shang, Zhanhuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Tibetan grassland active restoration soil organic matter mineralization soil warming structure equation model topsoil and subsoil Soil Carbon 7440-44-0
LEADER 01000naa a22002652 4500
001 NLM31545749X
003 DE-627
005 20231225154945.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15361  |2 doi 
028 5 2 |a pubmed24n1051.xml 
035 |a (DE-627)NLM31545749X 
035 |a (NLM)32974963 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bai, Yanfu  |e verfasserin  |4 aut 
245 1 0 |a Long-term active restoration of extremely degraded alpine grassland accelerated turnover and increased stability of soil carbon 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.04.2021 
500 |a Date Revised 14.04.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2020 John Wiley & Sons Ltd. 
520 |a Soil nutrient contents and organic carbon (C) stability are key indicators for restoration of degraded grassland. However, the effects of long-term active restoration of extremely degraded grassland on soil parameters have been equivocal. The aims of this study were to evaluate the impact of active restoration of degraded alpine grassland on: (a) soil organic matter (SOM) mineralization; and (b) the importance of biotic factors for temperature sensitivity (Q10 ) of SOM mineralization. Soils were sampled from intact, degraded and restored alpine grasslands at altitudes ranging between 3,900 and 4,200 m on the Tibetan Plateau. The samples were incubated at 5, 15 and 25°C, and Q10 values of SOM mineralization were determined. Structural equation modeling was used to evaluate the importance of vegetation, soil physico-chemical properties and microbial parameters for Q10 regulation. The Q10 of N mineralization was similar among intact, degraded and restored soils (0.84-1.24) and was higher in topsoil (1.09) than in subsoil (0.92). The best predictive factor of CO2 -Q10 for intact grassland was microbial biomass, for degraded grassland was basal microbial respiration, and for restored grassland was soil bulk density. Restoration by planting vegetation decreased the Q10 of SOM mineralization as soil bulk density, the most important negative predictor, increased in restored grassland. The Q10 of SOM mineralization in topsoil was 14% higher than in subsoil because of higher microbial abundance and exo-enzyme activities. The NH4 + content was greatest in intact soil, while NO3 - content was greatest in degraded soil. The SOM mineralization rate decreased with grassland degradation and increased after long-term (>10 years) restoration. In conclusion, extremely degraded grassland needs proper long-term management in active restoration projects, especially for improvement of soil nutrients in a harsh environment 
650 4 |a Journal Article 
650 4 |a Tibetan grassland 
650 4 |a active restoration 
650 4 |a soil organic matter mineralization 
650 4 |a soil warming 
650 4 |a structure equation model 
650 4 |a topsoil and subsoil 
650 7 |a Soil  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
700 1 |a Ma, Lina  |e verfasserin  |4 aut 
700 1 |a Degen, Abraham A  |e verfasserin  |4 aut 
700 1 |a Rafiq, Muhammad K  |e verfasserin  |4 aut 
700 1 |a Kuzyakov, Yakov  |e verfasserin  |4 aut 
700 1 |a Zhao, Jingxue  |e verfasserin  |4 aut 
700 1 |a Zhang, Rui  |e verfasserin  |4 aut 
700 1 |a Zhang, Tao  |e verfasserin  |4 aut 
700 1 |a Wang, Wenyin  |e verfasserin  |4 aut 
700 1 |a Li, Xiaogang  |e verfasserin  |4 aut 
700 1 |a Long, Ruijun  |e verfasserin  |4 aut 
700 1 |a Shang, Zhanhuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 26(2020), 12 vom: 15. Dez., Seite 7217-7228  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:26  |g year:2020  |g number:12  |g day:15  |g month:12  |g pages:7217-7228 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15361  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2020  |e 12  |b 15  |c 12  |h 7217-7228