|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM315399880 |
003 |
DE-627 |
005 |
20231225154831.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202004798
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1051.xml
|
035 |
|
|
|a (DE-627)NLM315399880
|
035 |
|
|
|a (NLM)32969108
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Fan, Ye
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A Self-Healing Amalgam Interface in Metal Batteries
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 26.10.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 Wiley-VCH GmbH.
|
520 |
|
|
|a Poor cyclability and safety concerns caused by the uncontrollable dendrite growth and large interfacial resistance severely restrict the practical applications of metal batteries. Herein, a facile, universal strategy to fabricate ceramic and glass phase compatible, and self-healing metal anodes is proposed. Various amalgam-metal anodes (Li, Na, Zn, Al, and Mg) show a long cycle life in symmetric cells. It has been found that liquid Li amalgam shows a complete wetting with the surface of lanthanum lithium titanate electrolyte and a glass-phase solid-state electrolyte. The interfacial compatibility between the lithium metal anode and solid-state electrolyte is dramatically improved by using an in situ regenerated amalgam interface with high electron/ion dual-conductivity, obviously decreasing the anode/electrolyte interfacial impedance. The lithium-amalgam interface between the metal anode and electrolyte undergoes a reversible isothermal phase transition between solid and liquid during the cycling process at room temperature, resulting in a self-healing surface of metal anodes
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a amalgam
|
650 |
|
4 |
|a metal batteries
|
650 |
|
4 |
|a solid-state electrolytes
|
700 |
1 |
|
|a Tao, Tao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Yuxuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Deng, Chao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Baozhi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Ying Ian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Shengguo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Shaoming
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 43 vom: 05. Okt., Seite e2004798
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:43
|g day:05
|g month:10
|g pages:e2004798
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202004798
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 43
|b 05
|c 10
|h e2004798
|