Chelation Crosslinking of Biodegradable Elastomers

© 2020 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 43 vom: 07. Okt., Seite e2003761
1. Verfasser: Chen, Ying (VerfasserIn)
Weitere Verfasser: Miller, Paula G, Ding, Xiaochu, Stowell, Chelsea E T, Kelly, Katie M, Wang, Yadong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article biocompatibility biodegradable elastomers metal chelation crosslinking Biocompatible Materials Chelating Agents Decanoic Acids Dicarboxylic Acids Elastomers Hydrogels mehr... Propylene Glycols Schiff Bases 1,3-propanediol 5965N8W85T sebacic acid 97AN39ICTC
Beschreibung
Zusammenfassung:© 2020 Wiley-VCH GmbH.
Widely present in nature and in manufactured goods, elastomers are network polymers typically crosslinked by strong covalent bonds. Elastomers crosslinked by weak bonds usually exhibit more plastic deformation. Here, chelation as a mechanism to produce biodegradable elastomers is reported. Polycondensation of sebacic acid, 1,3-propanediol, and a Schiff-base (2-[[(2-hydroxyphenyl) methylene]amino]-1,3-propanediol) forms a block copolymer that binds several biologically relevant metal ions. Chelation offers a unique advantage unseen in conventional elastomer design because one ligand binds multiple metal ions, yielding bonds of different strengths. Therefore, one polymeric ligand coordinated with different metal ions produces elastomers with vastly different characteristics. Mixing different metal ions in one polymer offers another degree of control on material properties. The density of the ligands in the block copolymer further regulates the mechanical properties. Moreover, a murine model reveals that Fe3+ crosslinked foam displays higher compatibility with subcutaneous tissues than the widely used biomaterial-polycaprolactone. The implantation sites restore to their normal architecture with little fibrosis upon degradation of the implants. The versatility of chelation-based design has already shown promise in hydrogels and highly stretchy nondegradable polymers. The biodegradable elastomers reported here would enable new materials and new possibilities in biomedicine and beyond
Beschreibung:Date Completed 19.07.2021
Date Revised 19.07.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202003761