Automated and accurate segmentation of leaf venation networks via deep learning

© 2020 The Authors New Phytologist © 2020 New Phytologist Trust.

Détails bibliographiques
Publié dans:The New phytologist. - 1984. - 229(2021), 1 vom: 21. Jan., Seite 631-648
Auteur principal: Xu, Hao (Auteur)
Autres auteurs: Blonder, Benjamin, Jodra, Miguel, Malhi, Yadvinder, Fricker, Mark
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:The New phytologist
Sujets:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. biological network analysis convolutional neural network deep learning hierarchical loop decomposition leaf trait leaf venation network network scaling spatial transportation network
LEADER 01000caa a22002652c 4500
001 NLM315355883
003 DE-627
005 20250228014621.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.16923  |2 doi 
028 5 2 |a pubmed25n1051.xml 
035 |a (DE-627)NLM315355883 
035 |a (NLM)32964424 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Hao  |e verfasserin  |4 aut 
245 1 0 |a Automated and accurate segmentation of leaf venation networks via deep learning 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.05.2021 
500 |a Date Revised 14.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2020 The Authors New Phytologist © 2020 New Phytologist Trust. 
520 |a Leaf vein network geometry can predict levels of resource transport, defence and mechanical support that operate at different spatial scales. However, it is challenging to quantify network architecture across scales due to the difficulties both in segmenting networks from images and in extracting multiscale statistics from subsequent network graph representations. Here we developed deep learning algorithms using convolutional neural networks (CNNs) to automatically segment leaf vein networks. Thirty-eight CNNs were trained on subsets of manually defined ground-truth regions from >700 leaves representing 50 southeast Asian plant families. Ensembles of six independently trained CNNs were used to segment networks from larger leaf regions (c. 100 mm2 ). Segmented networks were analysed using hierarchical loop decomposition to extract a range of statistics describing scale transitions in vein and areole geometry. The CNN approach gave a precision-recall harmonic mean of 94.5% ± 6%, outperforming other current network extraction methods, and accurately described the widths, angles and connectivity of veins. Multiscale statistics then enabled the identification of previously undescribed variation in network architecture across species. We provide a LeafVeinCNN software package to enable multiscale quantification of leaf vein networks, facilitating the comparison across species and the exploration of the functional significance of different leaf vein architectures 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a biological network analysis 
650 4 |a convolutional neural network 
650 4 |a deep learning 
650 4 |a hierarchical loop decomposition 
650 4 |a leaf trait 
650 4 |a leaf venation network 
650 4 |a network scaling 
650 4 |a spatial transportation network 
700 1 |a Blonder, Benjamin  |e verfasserin  |4 aut 
700 1 |a Jodra, Miguel  |e verfasserin  |4 aut 
700 1 |a Malhi, Yadvinder  |e verfasserin  |4 aut 
700 1 |a Fricker, Mark  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1984  |g 229(2021), 1 vom: 21. Jan., Seite 631-648  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnas 
773 1 8 |g volume:229  |g year:2021  |g number:1  |g day:21  |g month:01  |g pages:631-648 
856 4 0 |u http://dx.doi.org/10.1111/nph.16923  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 229  |j 2021  |e 1  |b 21  |c 01  |h 631-648