Scalable Variational Gaussian Processes for Crowdsourcing : Glitch Detection in LIGO

In the last years, crowdsourcing is transforming the way classification training sets are obtained. Instead of relying on a single expert annotator, crowdsourcing shares the labelling effort among a large number of collaborators. For instance, this is being applied in the laureate laser interferomet...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 3 vom: 21. März, Seite 1534-1551
1. Verfasser: Morales-Alvarez, Pablo (VerfasserIn)
Weitere Verfasser: Ruiz, Pablo, Coughlin, Scott, Molina, Rafael, Katsaggelos, Aggelos K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM31527347X
003 DE-627
005 20231225154543.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3025390  |2 doi 
028 5 2 |a pubmed24n1050.xml 
035 |a (DE-627)NLM31527347X 
035 |a (NLM)32956038 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Morales-Alvarez, Pablo  |e verfasserin  |4 aut 
245 1 0 |a Scalable Variational Gaussian Processes for Crowdsourcing  |b Glitch Detection in LIGO 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In the last years, crowdsourcing is transforming the way classification training sets are obtained. Instead of relying on a single expert annotator, crowdsourcing shares the labelling effort among a large number of collaborators. For instance, this is being applied in the laureate laser interferometer gravitational waves observatory (LIGO), in order to detect glitches which might hinder the identification of true gravitational-waves. The crowdsourcing scenario poses new challenging difficulties, as it has to deal with different opinions from a heterogeneous group of annotators with unknown degrees of expertise. Probabilistic methods, such as Gaussian processes (GP), have proven successful in modeling this setting. However, GPs do not scale up well to large data sets, which hampers their broad adoption in real-world problems (in particular LIGO). This has led to the very recent introduction of deep learning based crowdsourcing methods, which have become the state-of-the-art for this type of problems. However, the accurate uncertainty quantification provided by GPs has been partially sacrificed. This is an important aspect for astrophysicists in LIGO, since a glitch detection system should provide very accurate probability distributions of its predictions. In this work, we first leverage a standard sparse GP approximation (SVGP) to develop a GP-based crowdsourcing method that factorizes into mini-batches. This makes it able to cope with previously-prohibitive data sets. This first approach, which we refer to as scalable variational Gaussian processes for crowdsourcing (SVGPCR), brings back GP-based methods to a state-of-the-art level, and excels at uncertainty quantification. SVGPCR is shown to outperform deep learning based methods and previous probabilistic ones when applied to the LIGO data. Its behavior and main properties are carefully analyzed in a controlled experiment based on the MNIST data set. Moreover, recent GP inference techniques are also adapted to crowdsourcing and evaluated experimentally 
650 4 |a Journal Article 
700 1 |a Ruiz, Pablo  |e verfasserin  |4 aut 
700 1 |a Coughlin, Scott  |e verfasserin  |4 aut 
700 1 |a Molina, Rafael  |e verfasserin  |4 aut 
700 1 |a Katsaggelos, Aggelos K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 3 vom: 21. März, Seite 1534-1551  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:3  |g day:21  |g month:03  |g pages:1534-1551 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3025390  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 3  |b 21  |c 03  |h 1534-1551