Spherical Principal Curves

This paper presents a new approach for dimension reduction of data observed on spherical surfaces. Several dimension reduction techniques have been developed in recent years for non-euclidean data analysis. As a pioneer work, (Hauberg 2016) attempted to implement principal curves on Riemannian manif...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 6 vom: 21. Juni, Seite 2165-2171
1. Verfasser: Lee, Jongmin (VerfasserIn)
Weitere Verfasser: Kim, Jang-Hyun, Oh, Hee-Seok
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM315273461
003 DE-627
005 20231225154543.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3025327  |2 doi 
028 5 2 |a pubmed24n1050.xml 
035 |a (DE-627)NLM315273461 
035 |a (NLM)32956037 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lee, Jongmin  |e verfasserin  |4 aut 
245 1 0 |a Spherical Principal Curves 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents a new approach for dimension reduction of data observed on spherical surfaces. Several dimension reduction techniques have been developed in recent years for non-euclidean data analysis. As a pioneer work, (Hauberg 2016) attempted to implement principal curves on Riemannian manifolds. However, this approach uses approximations to process data on Riemannian manifolds, resulting in distorted results. This study proposes a new approach to project data onto a continuous curve to construct principal curves on spherical surfaces. Our approach lies in the same line of (Hastie and Stuetzle et al. 1989) that proposed principal curves for data on euclidean space. We further investigate the stationarity of the proposed principal curves that satisfy the self-consistency on spherical surfaces. The results on the real data analysis and simulation examples show promising empirical characteristics of the proposed approach 
650 4 |a Journal Article 
700 1 |a Kim, Jang-Hyun  |e verfasserin  |4 aut 
700 1 |a Oh, Hee-Seok  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 6 vom: 21. Juni, Seite 2165-2171  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:6  |g day:21  |g month:06  |g pages:2165-2171 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3025327  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 6  |b 21  |c 06  |h 2165-2171