Fully Inorganic Ruddlesden-Popper Double Cl-I and Triple Cl-Br-I Lead Halide Perovskite Nanocrystals

Copyright © 2019 American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 31(2019), 6 vom: 26. März, Seite 2182-2190
1. Verfasser: Akkerman, Quinten A (VerfasserIn)
Weitere Verfasser: Bladt, Eva, Petralanda, Urko, Dang, Zhiya, Sartori, Emanuela, Baranov, Dmitry, Abdelhady, Ahmed L, Infante, Ivan, Bals, Sara, Manna, Liberato
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Copyright © 2019 American Chemical Society.
The vast majority of lead halide perovskite (LHP) nanocrystals (NCs) are currently based on either a single halide composition (CsPbCl3, CsPbBr3, and CsPbI3) or an alloyed mixture of bromide with either Cl- or I- [i.e., CsPb(Br:Cl)3 or CsPb(Br:I)3]. In this work, we present the synthesis as well as a detailed optical and structural study of two halide alloying cases that have not previously been reported for LHP NCs: Cs2PbI2Cl2 NCs and triple halide CsPb(Cl:Br:I)3 NCs. In the case of Cs2PbI2Cl2, we observe for the first time NCs with a fully inorganic Ruddlesden-Popper phase (RPP) crystal structure. Unlike the well-explored organic-inorganic RPP, here, the RPP formation is triggered by the size difference between the halide ions. These NCs exhibit a strong excitonic absorption, albeit with a weak photoluminescence quantum yield (PLQY). In the case of the triple halide CsPb(Cl:Br:I)3 composition, the NCs comprise a CsPbBr2Cl perovskite crystal lattice with only a small amount of incorporated iodide, which segregates at RPP planes' interfaces within the CsPb(Cl:Br:I)3 NCs. Supported by density functional theory calculations and postsynthetic surface treatments to enhance the PLQY, we show that the combination of iodide segregation and defective RPP interfaces are most likely linked to the strong PL quenching observed in these nanostructures. In summary, this work demonstrates the limits of halide alloying in LHP NCs because a mixture that contains halide ions of very different sizes leads to the formation of defective RPP interfaces and a severe quenching of LHP NC's optical properties
Beschreibung:Date Revised 10.01.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:0897-4756
DOI:10.1021/acs.chemmater.9b00489