Differential Viewpoints for Ground Terrain Material Recognition

Computational surface modeling that underlies material recognition has transitioned from reflectance modeling using in-lab controlled radiometric measurements to image-based representations based on internet-mined single-view images captured in the scene. We take a middle-ground approach for materia...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 3 vom: 18. März, Seite 1205-1218
1. Verfasser: Xue, Jia (VerfasserIn)
Weitere Verfasser: Zhang, Hang, Nishino, Ko, Dana, Kristin J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM315178493
003 DE-627
005 20250228005804.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3025121  |2 doi 
028 5 2 |a pubmed25n1050.xml 
035 |a (DE-627)NLM315178493 
035 |a (NLM)32946386 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xue, Jia  |e verfasserin  |4 aut 
245 1 0 |a Differential Viewpoints for Ground Terrain Material Recognition 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Computational surface modeling that underlies material recognition has transitioned from reflectance modeling using in-lab controlled radiometric measurements to image-based representations based on internet-mined single-view images captured in the scene. We take a middle-ground approach for material recognition that takes advantage of both rich radiometric cues and flexible image capture. A key concept is differential angular imaging, where small angular variations in image capture enables angular-gradient features for an enhanced appearance representation that improves recognition. We build a large-scale material database, Ground Terrain in Outdoor Scenes (GTOS) database, to support ground terrain recognition for applications such as autonomous driving and robot navigation. The database consists of over 30,000 images covering 40 classes of outdoor ground terrain under varying weather and lighting conditions. We develop a novel approach for material recognition called texture-encoded angular network (TEAN) that combines deep encoding pooling of RGB information and differential angular images for angular-gradient features to fully leverage this large dataset. With this novel network architecture, we extract characteristics of materials encoded in the angular and spatial gradients of their appearance. Our results show that TEAN achieves recognition performance that surpasses single view performance and standard (non-differential/large-angle sampling) multiview performance 
650 4 |a Journal Article 
700 1 |a Zhang, Hang  |e verfasserin  |4 aut 
700 1 |a Nishino, Ko  |e verfasserin  |4 aut 
700 1 |a Dana, Kristin J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 3 vom: 18. März, Seite 1205-1218  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:44  |g year:2022  |g number:3  |g day:18  |g month:03  |g pages:1205-1218 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3025121  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 3  |b 18  |c 03  |h 1205-1218