Large-Scale Nonlinear AUC Maximization via Triply Stochastic Gradients

Learning to improve AUC performance for imbalanced data is an important machine learning research problem. Most methods of AUC maximization assume that the model function is linear in the original feature space. However, this assumption is not suitable for nonlinear separable problems. Although ther...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 3 vom: 18. März, Seite 1385-1398
Auteur principal: Dang, Zhiyuan (Auteur)
Autres auteurs: Li, Xiang, Gu, Bin, Deng, Cheng, Huang, Heng
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article