Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants

© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Détails bibliographiques
Publié dans:Journal of experimental botany. - 1985. - 72(2021), 3 vom: 11. Feb., Seite 830-847
Auteur principal: Corpas, Francisco J (Auteur)
Autres auteurs: González-Gordo, Salvador, Palma, José M
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:Journal of experimental botany
Sujets:Journal Article Research Support, Non-U.S. Gov't Review S-nitrosation 6-phosphogluconate dehydrogenase Glucose-6-phosphate dehydrogenase NADP-isocitrate dehydrogenase NADPH glutathionylation hydrogen sulfide plus... nitric oxide persulfidation tyrosine nitration Nitric Oxide 31C4KY9ESH NADP 53-59-8 Glucosephosphate Dehydrogenase EC 1.1.1.49 Hydrogen Sulfide YY9FVM7NSN
LEADER 01000caa a22002652c 4500
001 NLM315173564
003 DE-627
005 20250228005646.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/eraa440  |2 doi 
028 5 2 |a pubmed25n1050.xml 
035 |a (DE-627)NLM315173564 
035 |a (NLM)32945878 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Corpas, Francisco J  |e verfasserin  |4 aut 
245 1 0 |a Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.05.2021 
500 |a Date Revised 31.05.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. 
520 |a Nitric oxide (NO) and hydrogen sulfide (H2S) are two key molecules in plant cells that participate, directly or indirectly, as regulators of protein functions through derived post-translational modifications, mainly tyrosine nitration, S-nitrosation, and persulfidation. These post-translational modifications allow the participation of both NO and H2S signal molecules in a wide range of cellular processes either physiological or under stressful circumstances. NADPH participates in cellular redox status and it is a key cofactor necessary for cell growth and development. It is involved in significant biochemical routes such as fatty acid, carotenoid and proline biosynthesis, and the shikimate pathway, as well as in cellular detoxification processes including the ascorbate-glutathione cycle, the NADPH-dependent thioredoxin reductase (NTR), or the superoxide-generating NADPH oxidase. Plant cells have diverse mechanisms to generate NADPH by a group of NADP-dependent oxidoreductases including ferredoxin-NADP reductase (FNR), NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH), NADP-dependent malic enzyme (NADP-ME), NADP-dependent isocitrate dehydrogenase (NADP-ICDH), and both enzymes of the oxidative pentose phosphate pathway, designated as glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH). These enzymes consist of different isozymes located in diverse subcellular compartments (chloroplasts, cytosol, mitochondria, and peroxisomes) which contribute to the NAPDH cellular pool. We provide a comprehensive overview of how post-translational modifications promoted by NO (tyrosine nitration and S-nitrosation), H2S (persulfidation), and glutathione (glutathionylation), affect the cellular redox status through regulation of the NADP-dependent dehydrogenases 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Review 
650 4 |a S-nitrosation 
650 4 |a 6-phosphogluconate dehydrogenase 
650 4 |a Glucose-6-phosphate dehydrogenase 
650 4 |a NADP-isocitrate dehydrogenase 
650 4 |a NADPH 
650 4 |a glutathionylation 
650 4 |a hydrogen sulfide 
650 4 |a nitric oxide 
650 4 |a persulfidation 
650 4 |a tyrosine nitration 
650 7 |a Nitric Oxide  |2 NLM 
650 7 |a 31C4KY9ESH  |2 NLM 
650 7 |a NADP  |2 NLM 
650 7 |a 53-59-8  |2 NLM 
650 7 |a Glucosephosphate Dehydrogenase  |2 NLM 
650 7 |a EC 1.1.1.49  |2 NLM 
650 7 |a Hydrogen Sulfide  |2 NLM 
650 7 |a YY9FVM7NSN  |2 NLM 
700 1 |a González-Gordo, Salvador  |e verfasserin  |4 aut 
700 1 |a Palma, José M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 72(2021), 3 vom: 11. Feb., Seite 830-847  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnas 
773 1 8 |g volume:72  |g year:2021  |g number:3  |g day:11  |g month:02  |g pages:830-847 
856 4 0 |u http://dx.doi.org/10.1093/jxb/eraa440  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 72  |j 2021  |e 3  |b 11  |c 02  |h 830-847