NIID-Net : Adapting Surface Normal Knowledge for Intrinsic Image Decomposition in Indoor Scenes

Intrinsic image decomposition, i.e., decomposing a natural image into a reflectance image and a shading image, is used in many augmented reality applications for achieving better visual coherence between virtual contents and real scenes. The main challenge is that the decomposition is ill-posed, esp...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 26(2020), 12 vom: 17. Dez., Seite 3434-3445
1. Verfasser: Luo, Jundan (VerfasserIn)
Weitere Verfasser: Huang, Zhaoyang, Li, Yijin, Zhou, Xiaowei, Zhang, Guofeng, Bao, Hujun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM315126655
003 DE-627
005 20231225154233.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2020.3023565  |2 doi 
028 5 2 |a pubmed24n1050.xml 
035 |a (DE-627)NLM315126655 
035 |a (NLM)32941141 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Luo, Jundan  |e verfasserin  |4 aut 
245 1 0 |a NIID-Net  |b Adapting Surface Normal Knowledge for Intrinsic Image Decomposition in Indoor Scenes 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.11.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Intrinsic image decomposition, i.e., decomposing a natural image into a reflectance image and a shading image, is used in many augmented reality applications for achieving better visual coherence between virtual contents and real scenes. The main challenge is that the decomposition is ill-posed, especially in indoor scenes where lighting conditions are complicated, while real training data is inadequate. To solve this challenge, we propose NIID-Net, a novel learning-based framework that adapts surface normal knowledge for improving the decomposition. The knowledge learned from relatively more abundant data for surface normal estimation is integrated into intrinsic image decomposition in two novel ways. First, normal feature adapters are proposed to incorporate scene geometry features when decomposing the image. Secondly, a map of integrated lighting is proposed for propagating object contour and planarity information during shading rendering. Furthermore, this map is capable of representing spatially-varying lighting conditions indoors. Experiments show that NIID-Net achieves competitive performance in reflectance estimation and outperforms all previous methods in shading estimation quantitatively and qualitatively. The source code of our implementation is released at https://github.com/zju3dv/NIID-Net 
650 4 |a Journal Article 
700 1 |a Huang, Zhaoyang  |e verfasserin  |4 aut 
700 1 |a Li, Yijin  |e verfasserin  |4 aut 
700 1 |a Zhou, Xiaowei  |e verfasserin  |4 aut 
700 1 |a Zhang, Guofeng  |e verfasserin  |4 aut 
700 1 |a Bao, Hujun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 26(2020), 12 vom: 17. Dez., Seite 3434-3445  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:26  |g year:2020  |g number:12  |g day:17  |g month:12  |g pages:3434-3445 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2020.3023565  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2020  |e 12  |b 17  |c 12  |h 3434-3445