Deterministic Model Fitting by Local-neighbor Preservation and Global-residual Optimization

Geometric model fitting has been widely used in many computer vision tasks. However, it remains as a challenging task when handing multiple-structural data contaminated by noises and outliers. Most previous work on model fitting cannot guarantee the consistency of their solutions due to their random...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2020) vom: 17. Sept.
1. Verfasser: Xiao, Guobao (VerfasserIn)
Weitere Verfasser: Ma, Jiayi, Wang, Shiping, Chen, Changwen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM315126566
003 DE-627
005 20250228004504.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3023576  |2 doi 
028 5 2 |a pubmed25n1050.xml 
035 |a (DE-627)NLM315126566 
035 |a (NLM)32941133 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiao, Guobao  |e verfasserin  |4 aut 
245 1 0 |a Deterministic Model Fitting by Local-neighbor Preservation and Global-residual Optimization 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Geometric model fitting has been widely used in many computer vision tasks. However, it remains as a challenging task when handing multiple-structural data contaminated by noises and outliers. Most previous work on model fitting cannot guarantee the consistency of their solutions due to their randomness, precluding them from many real-world applications. In this research, we propose a fast two-view approximately deterministic model fitting scheme (called LGF), to provide consistent solutions for multiple-structural data. The proposed LGF scheme starts from defining preference function by preserving local neighborhood relationship, and then adopts the min-hash technique to roughly sample subsets. By this way, it is able to cover all model instances in data in the parameter space with a high probability. After that, LGF refines the previous sampled subsets by globalresidual optimization. Furthermore, we propose a simple yet effective model selection framework to estimate the number and the parameters of model instances in data. Extensive experiments on real images show that the proposed LGF scheme is able to observe superior or very competitive performance on both accuracy and speed over several state-of-the-art model fitting methods 
650 4 |a Journal Article 
700 1 |a Ma, Jiayi  |e verfasserin  |4 aut 
700 1 |a Wang, Shiping  |e verfasserin  |4 aut 
700 1 |a Chen, Changwen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2020) vom: 17. Sept.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:PP  |g year:2020  |g day:17  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3023576  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2020  |b 17  |c 09