Acclimation of leaf respiration temperature responses across thermally contrasting biomes

© 2020 The Authors New Phytologist © 2020 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 229(2021), 3 vom: 21. Feb., Seite 1312-1325
1. Verfasser: Zhu, Lingling (VerfasserIn)
Weitere Verfasser: Bloomfield, Keith J, Asao, Shinichi, Tjoelker, Mark G, Egerton, John J G, Hayes, Lucy, Weerasinghe, Lasantha K, Creek, Danielle, Griffin, Kevin L, Hurry, Vaughan, Liddell, Michael, Meir, Patrick, Turnbull, Matthew H, Atkin, Owen K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't climate change metabolism phenotypic plasticity respiration modelling thermal acclimation thermal tolerance
Beschreibung
Zusammenfassung:© 2020 The Authors New Phytologist © 2020 New Phytologist Trust.
Short-term temperature response curves of leaf dark respiration (R-T) provide insights into a critical process that influences plant net carbon exchange. This includes how respiratory traits acclimate to sustained changes in the environment. Our study analysed 860 high-resolution R-T (10-70°C range) curves for: (a) 62 evergreen species measured in two contrasting seasons across several field sites/biomes; and (b) 21 species (subset of those sampled in the field) grown in glasshouses at 20°C : 15°C, 25°C : 20°C and 30°C : 25°C, day : night. In the field, across all sites/seasons, variations in R25 (measured at 25°C) and the leaf T where R reached its maximum (Tmax ) were explained by growth T (mean air-T of 30-d before measurement), solar irradiance and vapour pressure deficit, with growth T having the strongest influence. R25 decreased and Tmax increased with rising growth T across all sites and seasons with the single exception of winter at the cool-temperate rainforest site where irradiance was low. The glasshouse study confirmed that R25 and Tmax thermally acclimated. Collectively, the results suggest: (1) thermal acclimation of leaf R is common in most biomes; and (2) the high T threshold of respiration dynamically adjusts upward when plants are challenged with warmer and hotter climates
Beschreibung:Date Completed 14.05.2021
Date Revised 14.05.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.16929