Protein-Coated Aryl Modified Gold Nanoparticles for Cellular Uptake Study by Osteosarcoma Cancer Cells

Gold nanoparticles coated with proteins have shown extraordinary biocompatibility which advanced to several nanomedicine engineering applications. We synthesized protein-coated gold nanoparticles using green and chemical reduction routes for cellular uptake study. In the current work, we coated gold...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 40 vom: 13. Okt., Seite 11765-11775
1. Verfasser: Hameed, Mehavesh (VerfasserIn)
Weitere Verfasser: Panicker, Seema, Abdallah, Sallam H, Khan, Amir A, Han, Changseok, Chehimi, Mohamed M, Mohamed, Ahmed A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Serum Albumin, Bovine 27432CM55Q Gold 7440-57-5
Beschreibung
Zusammenfassung:Gold nanoparticles coated with proteins have shown extraordinary biocompatibility which advanced to several nanomedicine engineering applications. We synthesized protein-coated gold nanoparticles using green and chemical reduction routes for cellular uptake study. In the current work, we coated gold-aryl nanoparticles of the type AuNPs-C6H4-4-COOH with bovine serum albumin (BSA), collagen, zein, and lysozyme proteins. Both routes were carried out without phase-transfer catalysts or extraneous stabilizing agents. High crystallinity of the AuNPs synthesized by the green route can be seen in transmission electron microscopy images. Osteosarcoma cancer cells are malignant bone tumors with abnormal cellular functions. Studies using MG-63 cells will provide mechanistic suggestions on the details of the amplification in tumors. We studied the cellular uptake of the bioconjugates by MG-63 osteosarcoma cells using laser confocal fluorescence microscopy (LCFM) and flow cytometry. In the LCFM study, BSA-AuNPs were uptaken most efficiently of all protein-coated gold nanoparticles synthesized by the green route. Lysozyme-AuNPs synthesized by the chemical reduction method were mostly efficiently internalized by MG-63 cells among all AuNPs. Zein- and lysozyme-coated AuNPs, though of relatively small size, prepared by the green method were not efficiently uptaken by MG-63. The two nanoparticles are negatively charged, and zein is also a hydrophobic coat. The difference in hydrophobicity and charge might have affected the internalization. All of those coated nanoparticles that were efficiently uptaken can potentially be used as diagnostic and therapeutic agents for osteosarcoma
Beschreibung:Date Completed 21.06.2021
Date Revised 21.06.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.0c01443