Sparse Recovery Beyond Compressed Sensing : Separable Nonlinear Inverse Problems

Extracting information from nonlinear measurements is a fundamental challenge in data analysis. In this work, we consider separable inverse problems, where the data are modeled as a linear combination of functions that depend nonlinearly on certain parameters of interest. These parameters may repres...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory. - 1998. - 66(2020), 9 vom: 13. Sept., Seite 5904-5926
1. Verfasser: Bernstein, Brett (VerfasserIn)
Weitere Verfasser: Liu, Sheng, Papadaniil, Chrysa, Fernandez-Granda, Carlos
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on information theory
Schlagworte:Journal Article Sparse recovery convex programming correlated measurements dual certificates incoherence nonlinear inverse problems source localization