Dewetting of Polymer Films Controlled by Protein Adsorption

The stability of the film poly(n-butyl methacrylate) (PnBMA) with different tacticities, prepared on silicon oxide and exposed to aqueous phosphate-buffered saline with different concentrations of bovine serum albumin (CBSA between 0 and 4.5 mg/mL), was examined at temperatures close to the physiolo...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 36(2020), 40 vom: 13. Okt., Seite 11817-11828
Auteur principal: Janiszewska, Natalia (Auteur)
Autres auteurs: Raczkowska, Joanna, Budkowski, Andrzej, Gajos, Katarzyna, Stetsyshyn, Yurij, Michalik, Maciej, Awsiuk, Kamil
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article Research Support, Non-U.S. Gov't
Description
Résumé:The stability of the film poly(n-butyl methacrylate) (PnBMA) with different tacticities, prepared on silicon oxide and exposed to aqueous phosphate-buffered saline with different concentrations of bovine serum albumin (CBSA between 0 and 4.5 mg/mL), was examined at temperatures close to the physiological limit (between 4 and 37 °C) with optical microscopy, contact angle measurements, atomic force microscopy, and time-of-flight secondary ion mass spectrometry. For PBS solutions with CBSA = 0, the stability of atactic PnBMA and dewetting of isotactic PnBMA was observed, caused by the interplay between the stabilizing long-range dispersion forces and the destabilizing short-range polar interactions. Analogous considerations of excess free energy cannot explain the retardation of dewetting observed for isotactic PnBMA in PBS solutions with higher CBSA. Instead, formation of a BSA overlayer, adsorbed preferentially but not exclusively to uncovered SiOx regions, is evidenced and postulated to hinder polymer dewetting. Polymer dewetting and protein patterning are obtained in one step, suggesting a simple approach to fabricate biomaterials with micropatterned proteins
Description:Date Completed 27.10.2020
Date Revised 30.03.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.0c01718