Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Weakly supervised semantic instance segmentation with only image-level supervision, instead of relying on expensive pixel-wise masks or bounding box annotations, is an important problem to alleviate the data-hungry nature of deep learning. In this article, we tackle this challenging problem by aggre...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 3 vom: 03. März, Seite 1415-1428
1. Verfasser: Liu, Yun (VerfasserIn)
Weitere Verfasser: Wu, Yu-Huan, Wen, Peisong, Shi, Yujun, Qiu, Yu, Cheng, Ming-Ming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM314879013
003 DE-627
005 20231225153706.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3023152  |2 doi 
028 5 2 |a pubmed24n1049.xml 
035 |a (DE-627)NLM314879013 
035 |a (NLM)32915726 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Yun  |e verfasserin  |4 aut 
245 1 0 |a Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Weakly supervised semantic instance segmentation with only image-level supervision, instead of relying on expensive pixel-wise masks or bounding box annotations, is an important problem to alleviate the data-hungry nature of deep learning. In this article, we tackle this challenging problem by aggregating the image-level information of all training images into a large knowledge graph and exploiting semantic relationships from this graph. Specifically, our effort starts with some generic segment-based object proposals (SOP) without category priors. We propose a multiple instance learning (MIL) framework, which can be trained in an end-to-end manner using training images with image-level labels. For each proposal, this MIL framework can simultaneously compute probability distributions and category-aware semantic features, with which we can formulate a large undirected graph. The category of background is also included in this graph to remove the massive noisy object proposals. An optimal multi-way cut of this graph can thus assign a reliable category label to each proposal. The denoised SOP with assigned category labels can be viewed as pseudo instance segmentation of training images, which are used to train fully supervised models. The proposed approach achieves state-of-the-art performance for both weakly supervised instance segmentation and semantic segmentation. The code is available at https://github.com/yun-liu/LIID 
650 4 |a Journal Article 
700 1 |a Wu, Yu-Huan  |e verfasserin  |4 aut 
700 1 |a Wen, Peisong  |e verfasserin  |4 aut 
700 1 |a Shi, Yujun  |e verfasserin  |4 aut 
700 1 |a Qiu, Yu  |e verfasserin  |4 aut 
700 1 |a Cheng, Ming-Ming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 3 vom: 03. März, Seite 1415-1428  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:3  |g day:03  |g month:03  |g pages:1415-1428 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3023152  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 3  |b 03  |c 03  |h 1415-1428