OPDA and ABA accumulation in Pb-stressed Zygophyllum fabago can be primed by salicylic acid and coincides with organ-specific differences in accumulation of phenolics
Copyright © 2020 Elsevier Masson SAS. All rights reserved.
Veröffentlicht in: | Plant physiology and biochemistry : PPB. - 1991. - 154(2020) vom: 15. Sept., Seite 612-621 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Plant physiology and biochemistry : PPB |
Schlagworte: | Journal Article Lead stress Phenol metabolism Priming Salicylic acid Stress-related phytohormones Zygophyllum fabago Fatty Acids, Unsaturated Phenols Plant Growth Regulators mehr... |
Zusammenfassung: | Copyright © 2020 Elsevier Masson SAS. All rights reserved. Salicylic acid (SA) is a well-known priming agent that is widely used to protect plants against stressing agents, including heavy metals as Pb. A better understanding of the mechanisms that enable plants to counteract Pb toxicity would help to select strategies for land reclamation programs. Here we used a metallicolous population of Zygophyllum fabago to assess the extent to which SA pretreatment modulates Pb-induced changes in phenol metabolism and stress-related phytohormone levels in roots and leaves. Our data revealed that accumulation of different phytohormones, lignin, soluble and wall-bound phenolics as well as peroxidase (PRX) activity in Pb-stressed plants differed after SA-pretreatment. Exposure to Pb led to the induction of soluble and cell wall-bound PRX activities, particularly those involved in the oxidation of coniferyl alcohol and ferulic acid, while pretreatment with SA reduced the Pb-induced stimulation of PRX activities in roots but increased them in leaves. SA-treatment by itself induced accumulation of ABA and the JA-precursor 12-oxo-phytodienoic acid (OPDA) in the roots. Pb in turn inhibited these SA-induced effects with the exception of OPDA accumulation that was primed by the pretreatment. The SA treatment also induced accumulation of OPDA in leaves but suppressed the accumulation of JA-Ile although with relatively small absolute changes. Notably, Pb-induced accumulation of ABA was primed in the leaves of SA-pretreated plants. Together our data suggest that priming of OPDA accumulation in the roots and of ABA in the leaves by SA-pretreatment may play important regulatory roles, possibly via regulating PRX activities, for Pb stress in plants |
---|---|
Beschreibung: | Date Completed 18.11.2020 Date Revised 18.11.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1873-2690 |
DOI: | 10.1016/j.plaphy.2020.06.028 |