Kernel-Based Density Map Generation for Dense Object Counting

Crowd counting is an essential topic in computer vision due to its practical usage in surveillance systems. The typical design of crowd counting algorithms is divided into two steps. First, the ground-truth density maps of crowd images are generated from the ground-truth dot maps (density map genera...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 3 vom: 30. März, Seite 1357-1370
1. Verfasser: Wan, Jia (VerfasserIn)
Weitere Verfasser: Wang, Qingzhong, Chan, Antoni B
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM314757678
003 DE-627
005 20250227231145.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3022878  |2 doi 
028 5 2 |a pubmed25n1049.xml 
035 |a (DE-627)NLM314757678 
035 |a (NLM)32903177 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wan, Jia  |e verfasserin  |4 aut 
245 1 0 |a Kernel-Based Density Map Generation for Dense Object Counting 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Crowd counting is an essential topic in computer vision due to its practical usage in surveillance systems. The typical design of crowd counting algorithms is divided into two steps. First, the ground-truth density maps of crowd images are generated from the ground-truth dot maps (density map generation), e.g., by convolving with a Gaussian kernel. Second, deep learning models are designed to predict a density map from an input image (density map estimation). The density map based counting methods that incorporate density map as the intermediate representation have improved counting performance dramatically. However, in the sense of end-to-end training, the hand-crafted methods used for generating the density maps may not be optimal for the particular network or dataset used. To address this issue, we propose an adaptive density map generator, which takes the annotation dot map as input, and learns a density map representation for a counter. The counter and generator are trained jointly within an end-to-end framework. We also show that the proposed framework can be applied to general dense object counting tasks. Extensive experiments are conducted on 10 datasets for 3 applications: crowd counting, vehicle counting, and general object counting. The experiment results on these datasets confirm the effectiveness of the proposed learnable density map representations 
650 4 |a Journal Article 
700 1 |a Wang, Qingzhong  |e verfasserin  |4 aut 
700 1 |a Chan, Antoni B  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 3 vom: 30. März, Seite 1357-1370  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:44  |g year:2022  |g number:3  |g day:30  |g month:03  |g pages:1357-1370 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3022878  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 3  |b 30  |c 03  |h 1357-1370