Spatial structure in protected forest-grassland mosaics : Exploring futures under climate change

© 2020 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 26(2020), 11 vom: 01. Nov., Seite 6097-6115
1. Verfasser: Fair, Kathyrn R (VerfasserIn)
Weitere Verfasser: Anand, Madhur, Bauch, Chris T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article climate change disturbance regimes ecological modelling forest-grassland mosaics human-impacted ecosystems spatial modelling sustainability science theoretical ecology
Beschreibung
Zusammenfassung:© 2020 John Wiley & Sons Ltd.
In mosaic ecosystems, multiple land types coexist as alternative stable states exhibiting distinct spatial patterns. Forest-grassland mosaics are ecologically valuable, due to their high species richness. However, anthropogenic disturbances threaten these ecosystems. Designating protected areas is one approach to preserving natural mosaics. Such work must account for climate change, yet there are few spatially explicit models of mosaics under climate change that can predict its effects. We construct a spatially explicit simulation model for a natural forest-grassland mosaic, parameterized for Southern Brazil. Using this model, we investigate how the spatial structure of these systems is altered under climate change and other disturbance regimes. By including local spatial interactions and fire-mediated forest recruitment, our model reproduces important spatial features of protected real-world mosaics, including the number of forest patches and overall forest cover. Multiple concurrent changes in environmental conditions have greater impacts on tree cover and spatial structure in simulated mosaics than single changes. This sensitivity reflects the narrow range of conditions under which simulated mosaics persist and emphasizes their vulnerability. Our model predicts that, in protected mosaics, climate change impacts on the fire-mediated threshold to recruitment will likely result in substantial increases in forest cover under Representative Concentration Pathway (RCP) 8.5, with potential for mosaic loss over a broad range of initial forest cover levels. Forest cover trajectories are similar until 2150, when cover increases under RCP 8.5 outpace those under RCP 2.6. Mosaics that persist under RCP 8.5 may experience structural alterations at the patch and landscape level. Our simple model predicts several realistic aspects of spatial structure as well as plausible responses to likely regional climate shifts. Hence, further model development could provide a useful tool when building strategies for protecting these ecosystems, by informing site selection for conservation areas that will be favourable to forest-grassland mosaics under future climates
Beschreibung:Date Completed 14.04.2021
Date Revised 14.04.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1365-2486
DOI:10.1111/gcb.15288