Modeling Ultrasound Propagation in the Moving Brain : Applications to Shear Shock Waves and Traumatic Brain Injury

Traumatic brain injury (TBI) studies on the living human brain are experimentally infeasible due to ethical reasons and the elastic properties of the brain degrade rapidly postmortem. We present a simulation approach that models ultrasound propagation in the human brain, while it is moving due to th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 68(2021), 1 vom: 15. Jan., Seite 201-212
1. Verfasser: Chandrasekaran, Sandhya (VerfasserIn)
Weitere Verfasser: Tripathi, Bharat B, Espindola, David, Pinton, Gianmarco F
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, N.I.H., Extramural
LEADER 01000naa a22002652 4500
001 NLM314674314
003 DE-627
005 20231225153235.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2020.3022567  |2 doi 
028 5 2 |a pubmed24n1048.xml 
035 |a (DE-627)NLM314674314 
035 |a (NLM)32894713 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chandrasekaran, Sandhya  |e verfasserin  |4 aut 
245 1 0 |a Modeling Ultrasound Propagation in the Moving Brain  |b Applications to Shear Shock Waves and Traumatic Brain Injury 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.10.2021 
500 |a Date Revised 25.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Traumatic brain injury (TBI) studies on the living human brain are experimentally infeasible due to ethical reasons and the elastic properties of the brain degrade rapidly postmortem. We present a simulation approach that models ultrasound propagation in the human brain, while it is moving due to the complex shear shock wave deformation from a traumatic impact. Finite difference simulations can model ultrasound propagation in complex media such as human tissue. Recently, we have shown that the fullwave finite difference approach can also be used to represent displacements that are much smaller than the grid size, such as the motion encountered in shear wave propagation from ultrasound elastography. However, this subresolution displacement model, called impedance flow, was only implemented and validated for acoustical media composed of randomly distributed scatterers. Herein, we propose a generalization of the impedance flow method that describes the continuous subresolution motion of structured acoustical maps, and in particular of acoustical maps of the human brain. It is shown that the average error in simulating subresolution displacements using impedance flow is small when compared to the acoustical wavelength ( λ /1702). The method is then applied to acoustical maps of the human brain with a motion that is imposed by the propagation of a shear shock wave. This motion is determined numerically with a custom piecewise parabolic method that is calibrated to ex vivo observations of shear shocks in the porcine brain. Then the fullwave simulation tool is used to model transmit-receive imaging sequences based on an L7-4 imaging transducer. The simulated radio frequency data are beamformed using a conventional delay-and-sum method and a normalized cross-correlation method designed for shock wave tracking is used to determine the tissue motion. This overall process is an in silico reproduction of the experiments that were previously performed to observe shear shock waves in fresh porcine brain. It is shown that the proposed generalized impedance flow method accurately captures the shear wave motion in terms of the wave profile, shock front characteristics, odd harmonic spectrum generation, and acceleration at the shear shock front. We expect that this approach will lead to improvements in image sequence design that takes into account the aberration and multiple reflections from the brain and in the design of tracking algorithms that can more accurately capture the complex brain motion that occurs during a traumatic impact. These methods of modeling ultrasound propagation in moving media can also be applied to other displacements, such as those generated by shear wave elastography or blood flow 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
700 1 |a Tripathi, Bharat B  |e verfasserin  |4 aut 
700 1 |a Espindola, David  |e verfasserin  |4 aut 
700 1 |a Pinton, Gianmarco F  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 68(2021), 1 vom: 15. Jan., Seite 201-212  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:68  |g year:2021  |g number:1  |g day:15  |g month:01  |g pages:201-212 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2020.3022567  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 68  |j 2021  |e 1  |b 15  |c 01  |h 201-212