Effective Modulation of CNS Inhibitory Microenvironment using Bioinspired Hybrid-Nanoscaffold-Based Therapeutic Interventions

© 2020 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 43 vom: 17. Okt., Seite e2002578
1. Verfasser: Yang, Letao (VerfasserIn)
Weitere Verfasser: Conley, Brian M, Cerqueira, Susana R, Pongkulapa, Thanapat, Wang, Shenqiang, Lee, Jae K, Lee, Ki-Bum
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article biomaterials inorganic-organic hybrid nanomaterials nanoscaffolds neural tissue engineering spinal cord injury Anti-Inflammatory Agents Drug Carriers
LEADER 01000naa a22002652 4500
001 NLM314661328
003 DE-627
005 20231225153218.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202002578  |2 doi 
028 5 2 |a pubmed24n1048.xml 
035 |a (DE-627)NLM314661328 
035 |a (NLM)32893402 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Letao  |e verfasserin  |4 aut 
245 1 0 |a Effective Modulation of CNS Inhibitory Microenvironment using Bioinspired Hybrid-Nanoscaffold-Based Therapeutic Interventions 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.07.2021 
500 |a Date Revised 12.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2020 Wiley-VCH GmbH. 
520 |a Central nervous system (CNS) injuries are often debilitating, and most currently have no cure. This is due to the formation of a neuroinhibitory microenvironment at injury sites, which includes neuroinflammatory signaling and non-permissive extracellular matrix (ECM) components. To address this challenge, a viscous interfacial self-assembly approach, to generate a bioinspired hybrid 3D porous nanoscaffold platform for delivering anti-inflammatory molecules and establish a favorable 3D-ECM environment for the effective suppression of the neuroinhibitory microenvironment, is developed. By tailoring the structural and biochemical properties of the 3D porous nanoscaffold, enhanced axonal growth from the dual-targeting therapeutic strategy in a human induced pluripotent stem cell (hiPSC)-based in vitro model of neuroinflammation is demonstrated. Moreover, nanoscaffold-based approaches promote significant axonal growth and functional recovery in vivo in a spinal cord injury model through a unique mechanism of anti-inflammation-based fibrotic scar reduction. Given the critical role of neuroinflammation and ECM microenvironments in neuroinhibitory signaling, the developed nanobiomaterial-based therapeutic intervention may pave a new road for treating CNS injuries 
650 4 |a Journal Article 
650 4 |a biomaterials 
650 4 |a inorganic-organic hybrid nanomaterials 
650 4 |a nanoscaffolds 
650 4 |a neural tissue engineering 
650 4 |a spinal cord injury 
650 7 |a Anti-Inflammatory Agents  |2 NLM 
650 7 |a Drug Carriers  |2 NLM 
700 1 |a Conley, Brian M  |e verfasserin  |4 aut 
700 1 |a Cerqueira, Susana R  |e verfasserin  |4 aut 
700 1 |a Pongkulapa, Thanapat  |e verfasserin  |4 aut 
700 1 |a Wang, Shenqiang  |e verfasserin  |4 aut 
700 1 |a Lee, Jae K  |e verfasserin  |4 aut 
700 1 |a Lee, Ki-Bum  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 43 vom: 17. Okt., Seite e2002578  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:43  |g day:17  |g month:10  |g pages:e2002578 
856 4 0 |u http://dx.doi.org/10.1002/adma.202002578  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 43  |b 17  |c 10  |h e2002578