Interactive Deep Colorization and its Application for Image Compression

Recent methods based on deep learning have shown promise in converting grayscale images to colored ones. However, most of them only allow limited user inputs (no inputs, only global inputs, or only local inputs), to control the output colorful images. The possible difficulty lies in how to different...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 3 vom: 03. März, Seite 1557-1572
1. Verfasser: Xiao, Yi (VerfasserIn)
Weitere Verfasser: Wu, Jin, Zhang, Jie, Zhou, Peiyao, Zheng, Yan, Leung, Chi-Sing, Kavan, Ladislav
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM314545727
003 DE-627
005 20231225152947.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2020.3021510  |2 doi 
028 5 2 |a pubmed24n1048.xml 
035 |a (DE-627)NLM314545727 
035 |a (NLM)32881687 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiao, Yi  |e verfasserin  |4 aut 
245 1 0 |a Interactive Deep Colorization and its Application for Image Compression 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 31.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recent methods based on deep learning have shown promise in converting grayscale images to colored ones. However, most of them only allow limited user inputs (no inputs, only global inputs, or only local inputs), to control the output colorful images. The possible difficulty lies in how to differentiate the influences of different inputs. To solve this problem, we propose a two-stage deep colorization method allowing users to control the results by flexibly setting global inputs and local inputs. The key steps include enabling color themes as global inputs by extracting K mean colors and generating K-color maps to define a global theme loss, and designing a loss function to differentiate the influences of different inputs without causing artifacts. We also propose a color theme recommendation method to help users choose color themes. Based on the colorization model, we further propose an image compression scheme, which supports variable compression ratios in a single network. Experiments on colorization show that our method can flexibly control the colorized results with only a few inputs and generate state-of-the-art results. Experiments on compression show that our method achieves much higher image quality at the same compression ratio when compared to the state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Wu, Jin  |e verfasserin  |4 aut 
700 1 |a Zhang, Jie  |e verfasserin  |4 aut 
700 1 |a Zhou, Peiyao  |e verfasserin  |4 aut 
700 1 |a Zheng, Yan  |e verfasserin  |4 aut 
700 1 |a Leung, Chi-Sing  |e verfasserin  |4 aut 
700 1 |a Kavan, Ladislav  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 28(2022), 3 vom: 03. März, Seite 1557-1572  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:3  |g day:03  |g month:03  |g pages:1557-1572 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2020.3021510  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 3  |b 03  |c 03  |h 1557-1572