|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM314541276 |
003 |
DE-627 |
005 |
20231225152942.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/gcb.15302
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1048.xml
|
035 |
|
|
|a (DE-627)NLM314541276
|
035 |
|
|
|a (NLM)32881210
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Burdon, Francis J
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Stream microbial communities and ecosystem functioning show complex responses to multiple stressors in wastewater
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 14.04.2021
|
500 |
|
|
|a Date Revised 07.12.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
|
520 |
|
|
|a Multiple anthropogenic drivers are changing ecosystems globally, with a disproportionate and intensifying impact on freshwater habitats. A major impact of urbanization are inputs from wastewater treatment plants (WWTPs). Initially designed to reduce eutrophication and improve water quality, WWTPs increasingly release a multitude of micropollutants (MPs; i.e., synthetic chemicals) and microbes (including antibiotic-resistant bacteria) to receiving environments. This pollution may have pervasive impacts on biodiversity and ecosystem services. Viewed through multiple lenses of macroecological and ecotoxicological theory, we combined field, flume, and laboratory experiments to determine the effects of wastewater (WW) on microbial communities and organic-matter processing using a standardized decomposition assay. First, we conducted a mensurative experiment sampling 60 locations above and below WWTP discharges in 20 Swiss streams. Microbial respiration and decomposition rates were positively influenced by WW inputs via warming and nutrient enrichment, but with a notable exception: WW decreased the activation energy of decomposition, indicating a "slowing" of this fundamental ecosystem process in response to temperature. Second, next-generation sequencing indicated that microbial community structure below WWTPs was altered, with significant compositional turnover, reduced richness, and evidence of negative MP influences. Third, a series of flume experiments confirmed that although diluted WW generally has positive influences on microbial-mediated processes, the negative effects of MPs are "masked" by nutrient enrichment. Finally, transplant experiments suggested that WW-borne microbes enhance decomposition rates. Taken together, our results affirm the multiple stressor paradigm by showing that different aspects of WW (warming, nutrients, microbes, and MPs) jointly influence ecosystem functioning in complex ways. Increased respiration rates below WWTPs potentially generate ecosystem "disservices" via greater carbon evasion from streams and rivers. However, toxic MP effects may fundamentally alter ecological scaling relationships, indicating the need for a rapprochement between ecotoxicological and macroecological perspectives
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a biodiversity
|
650 |
|
4 |
|a carbon processing
|
650 |
|
4 |
|a cotton-strip assay
|
650 |
|
4 |
|a micropollutants
|
650 |
|
4 |
|a next-generation sequencing
|
650 |
|
4 |
|a nutrients
|
650 |
|
4 |
|a temperature
|
650 |
|
4 |
|a warming
|
650 |
|
7 |
|a Waste Water
|2 NLM
|
700 |
1 |
|
|a Bai, Yaohui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Reyes, Marta
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tamminen, Manu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Staudacher, Philipp
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mangold, Simon
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Singer, Heinz
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Räsänen, Katja
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Joss, Adriano
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tiegs, Scott D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jokela, Jukka
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Eggen, Rik I L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Stamm, Christian
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Global change biology
|d 1999
|g 26(2020), 11 vom: 15. Nov., Seite 6363-6382
|w (DE-627)NLM098239996
|x 1365-2486
|7 nnns
|
773 |
1 |
8 |
|g volume:26
|g year:2020
|g number:11
|g day:15
|g month:11
|g pages:6363-6382
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/gcb.15302
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 26
|j 2020
|e 11
|b 15
|c 11
|h 6363-6382
|