Semantic Object Accuracy for Generative Text-to-Image Synthesis

Generative adversarial networks conditioned on textual image descriptions are capable of generating realistic-looking images. However, current methods still struggle to generate images based on complex image captions from a heterogeneous domain. Furthermore, quantitatively evaluating these text-to-i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 3 vom: 01. März, Seite 1552-1565
1. Verfasser: Hinz, Tobias (VerfasserIn)
Weitere Verfasser: Heinrich, Stefan, Wermter, Stefan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM314502769
003 DE-627
005 20250227221305.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3021209  |2 doi 
028 5 2 |a pubmed25n1048.xml 
035 |a (DE-627)NLM314502769 
035 |a (NLM)32877332 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hinz, Tobias  |e verfasserin  |4 aut 
245 1 0 |a Semantic Object Accuracy for Generative Text-to-Image Synthesis 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.03.2022 
500 |a Date Revised 01.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Generative adversarial networks conditioned on textual image descriptions are capable of generating realistic-looking images. However, current methods still struggle to generate images based on complex image captions from a heterogeneous domain. Furthermore, quantitatively evaluating these text-to-image models is challenging, as most evaluation metrics only judge image quality but not the conformity between the image and its caption. To address these challenges we introduce a new model that explicitly models individual objects within an image and a new evaluation metric called Semantic Object Accuracy (SOA) that specifically evaluates images given an image caption. The SOA uses a pre-trained object detector to evaluate if a generated image contains objects that are mentioned in the image caption, e.g., whether an image generated from "a car driving down the street" contains a car. We perform a user study comparing several text-to-image models and show that our SOA metric ranks the models the same way as humans, whereas other metrics such as the Inception Score do not. Our evaluation also shows that models which explicitly model objects outperform models which only model global image characteristics 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Heinrich, Stefan  |e verfasserin  |4 aut 
700 1 |a Wermter, Stefan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 3 vom: 01. März, Seite 1552-1565  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:44  |g year:2022  |g number:3  |g day:01  |g month:03  |g pages:1552-1565 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3021209  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 3  |b 01  |c 03  |h 1552-1565