|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM314495371 |
003 |
DE-627 |
005 |
20231225152844.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1107/S1600577520007900
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1048.xml
|
035 |
|
|
|a (DE-627)NLM314495371
|
035 |
|
|
|a (NLM)32876586
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Seiboth, Frank
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Hard X-ray wavefront correction via refractive phase plates made by additive and subtractive fabrication techniques
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 12.11.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a open access.
|
520 |
|
|
|a Modern subtractive and additive manufacturing techniques present new avenues for X-ray optics with complex shapes and patterns. Refractive phase plates acting as glasses for X-ray optics have been fabricated, and spherical aberration in refractive X-ray lenses made from beryllium has been successfully corrected. A diamond phase plate made by femtosecond laser ablation was found to improve the Strehl ratio of a lens stack with a numerical aperture (NA) of 0.88 × 10-3 at 8.2 keV from 0.1 to 0.7. A polymer phase plate made by additive printing achieved an increase in the Strehl ratio of a lens stack at 35 keV with NA of 0.18 × 10-3 from 0.15 to 0.89, demonstrating diffraction-limited nanofocusing at high X-ray energies
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a aberration correction
|
650 |
|
4 |
|a phase plate
|
650 |
|
4 |
|a ptychography
|
650 |
|
4 |
|a refractive X-ray optics
|
700 |
1 |
|
|a Brückner, Dennis
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kahnt, Maik
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lyubomirskiy, Mikhail
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wittwer, Felix
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dzhigaev, Dmitry
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ullsperger, Tobias
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nolte, Stefan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Koch, Frieder
|e verfasserin
|4 aut
|
700 |
1 |
|
|a David, Christian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Garrevoet, Jan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Falkenberg, Gerald
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Schroer, Christian G
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of synchrotron radiation
|d 1994
|g 27(2020), Pt 5 vom: 01. Sept., Seite 1121-1130
|w (DE-627)NLM09824129X
|x 1600-5775
|7 nnns
|
773 |
1 |
8 |
|g volume:27
|g year:2020
|g number:Pt 5
|g day:01
|g month:09
|g pages:1121-1130
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1107/S1600577520007900
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_2005
|
951 |
|
|
|a AR
|
952 |
|
|
|d 27
|j 2020
|e Pt 5
|b 01
|c 09
|h 1121-1130
|