GeoNet++ : Iterative Geometric Neural Network with Edge-Aware Refinement for Joint Depth and Surface Normal Estimation

In this paper, we propose a geometric neural network with edge-aware refinement (GeoNet++) to jointly predict both depth and surface normal maps from a single image. Building on top of two-stream CNNs, GeoNet++ captures the geometric relationships between depth and surface normals with the proposed...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 2 vom: 01. Feb., Seite 969-984
1. Verfasser: Qi, Xiaojuan (VerfasserIn)
Weitere Verfasser: Liu, Zhengzhe, Liao, Renjie, Torr, Philip H S, Urtasun, Raquel, Jia, Jiaya
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM314437908
003 DE-627
005 20231225152732.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3020800  |2 doi 
028 5 2 |a pubmed24n1048.xml 
035 |a (DE-627)NLM314437908 
035 |a (NLM)32870785 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qi, Xiaojuan  |e verfasserin  |4 aut 
245 1 0 |a GeoNet++  |b Iterative Geometric Neural Network with Edge-Aware Refinement for Joint Depth and Surface Normal Estimation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.03.2022 
500 |a Date Revised 01.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In this paper, we propose a geometric neural network with edge-aware refinement (GeoNet++) to jointly predict both depth and surface normal maps from a single image. Building on top of two-stream CNNs, GeoNet++ captures the geometric relationships between depth and surface normals with the proposed depth-to-normal and normal-to-depth modules. In particular, the "depth-to-normal" module exploits the least square solution of estimating surface normals from depth to improve their quality, while the "normal-to-depth" module refines the depth map based on the constraints on surface normals through kernel regression. Boundary information is exploited via an edge-aware refinement module. GeoNet++ effectively predicts depth and surface normals with high 3D consistency and sharp boundaries resulting in better reconstructed 3D scenes. Note that GeoNet++ is generic and can be used in other depth/normal prediction frameworks to improve 3D reconstruction quality and pixel-wise accuracy of depth and surface normals. Furthermore, we propose a new 3D geometric metric (3DGM) for evaluating depth prediction in 3D. In contrast to current metrics that focus on evaluating pixel-wise error/accuracy, 3DGM measures whether the predicted depth can reconstruct high quality 3D surface normals. This is a more natural metric for many 3D application domains. Our experiments on NYUD-V2 [1] and KITTI [2] datasets verify that GeoNet++ produces fine boundary details and the predicted depth can be used to reconstruct high quality 3D surfaces 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Liu, Zhengzhe  |e verfasserin  |4 aut 
700 1 |a Liao, Renjie  |e verfasserin  |4 aut 
700 1 |a Torr, Philip H S  |e verfasserin  |4 aut 
700 1 |a Urtasun, Raquel  |e verfasserin  |4 aut 
700 1 |a Jia, Jiaya  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 2 vom: 01. Feb., Seite 969-984  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:2  |g day:01  |g month:02  |g pages:969-984 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3020800  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 2  |b 01  |c 02  |h 969-984