Exploration of continuous-flow benchtop NMR acquisition parameters and considerations for reaction monitoring

© 2020 John Wiley & Sons, Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in chemistry : MRC. - 1985. - 58(2020), 12 vom: 15. Dez., Seite 1234-1248
1. Verfasser: Maschmeyer, Tristan (VerfasserIn)
Weitere Verfasser: Prieto, Paloma L, Grunert, Shad, Hein, Jason E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Magnetic resonance in chemistry : MRC
Schlagworte:Journal Article Research Support, Non-U.S. Gov't benchtop NMR continuous-flow NMR low-field 1H NMR parameter optimization process analytical technology reaction monitoring
LEADER 01000naa a22002652 4500
001 NLM314435492
003 DE-627
005 20231225152729.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/mrc.5094  |2 doi 
028 5 2 |a pubmed24n1048.xml 
035 |a (DE-627)NLM314435492 
035 |a (NLM)32870524 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Maschmeyer, Tristan  |e verfasserin  |4 aut 
245 1 0 |a Exploration of continuous-flow benchtop NMR acquisition parameters and considerations for reaction monitoring 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.04.2021 
500 |a Date Revised 01.04.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 John Wiley & Sons, Ltd. 
520 |a This study focused on fundamental data acquisition parameter selection for a benchtop nuclear magnetic resonance (NMR) system with continuous flow, applicable for reaction monitoring. The effect of flow rate on the mixing behaviors within a flow cell was observed, along with an exponential decay relationship between flow rate and the apparent spin-lattice relaxation time (T1*) of benzaldehyde. We also monitored sensitivity (as determined by signal-to-noise ratios; SNRs) under various flow rates, analyte concentrations, and temperatures of the analyte flask. Results suggest that a maximum SNR can be achieved with low to medium flow rates and higher analyte concentrations. This was consistent with data collected with parameters that promote either slow or fast data acquisition. We further consider the effect of these conditions on the analyte's residence time, T1*, and magnetic field inhomogeneity that is a product of continuous flow. Altogether, our results demonstrate how fundamental acquisition parameters can be manipulated to achieve optimal data acquisition in continuous-flow NMR systems 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a benchtop NMR 
650 4 |a continuous-flow NMR 
650 4 |a low-field 1H NMR 
650 4 |a parameter optimization 
650 4 |a process analytical technology 
650 4 |a reaction monitoring 
700 1 |a Prieto, Paloma L  |e verfasserin  |4 aut 
700 1 |a Grunert, Shad  |e verfasserin  |4 aut 
700 1 |a Hein, Jason E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Magnetic resonance in chemistry : MRC  |d 1985  |g 58(2020), 12 vom: 15. Dez., Seite 1234-1248  |w (DE-627)NLM098179667  |x 1097-458X  |7 nnns 
773 1 8 |g volume:58  |g year:2020  |g number:12  |g day:15  |g month:12  |g pages:1234-1248 
856 4 0 |u http://dx.doi.org/10.1002/mrc.5094  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 58  |j 2020  |e 12  |b 15  |c 12  |h 1234-1248