DATA : Differentiable ArchiTecture Approximation With Distribution Guided Sampling

Neural architecture search (NAS) is inherently subject to the gap of architectures during searching and validating. To bridge this gap effectively, we develop Differentiable ArchiTecture Approximation (DATA) with Ensemble Gumbel-Softmax (EGS) estimator and Architecture Distribution Constraint (ADC)...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 9 vom: 01. Sept., Seite 2905-2920
1. Verfasser: Zhang, Xinbang (VerfasserIn)
Weitere Verfasser: Chang, Jianlong, Guo, Yiwen, Meng, Gaofeng, Xiang, Shiming, Lin, Zhouchen, Pan, Chunhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM314392149
003 DE-627
005 20231225152628.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3020315  |2 doi 
028 5 2 |a pubmed24n1047.xml 
035 |a (DE-627)NLM314392149 
035 |a (NLM)32866094 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Xinbang  |e verfasserin  |4 aut 
245 1 0 |a DATA  |b Differentiable ArchiTecture Approximation With Distribution Guided Sampling 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.09.2021 
500 |a Date Revised 29.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Neural architecture search (NAS) is inherently subject to the gap of architectures during searching and validating. To bridge this gap effectively, we develop Differentiable ArchiTecture Approximation (DATA) with Ensemble Gumbel-Softmax (EGS) estimator and Architecture Distribution Constraint (ADC) to automatically approximate architectures during searching and validating in a differentiable manner. Technically, the EGS estimator consists of a group of Gumbel-Softmax estimators, which is capable of converting probability vectors to binary codes and passing gradients reversely, reducing the estimation bias in a differentiable way. To narrow the distribution gap between sampled architectures and supernet, further, the ADC is introduced to reduce the variance of sampling during searching. Benefiting from such modeling, architecture probabilities and network weights in the NAS model can be jointly optimized with the standard back-propagation, yielding an end-to-end learning mechanism for searching deep neural architectures in an extended search space. Conclusively, in the validating process, a high-performance architecture that approaches to the learned one during searching is readily built. Extensive experiments on various tasks including image classification, few-shot learning, unsupervised clustering, semantic segmentation and language modeling strongly demonstrate that DATA is capable of discovering high-performance architectures while guaranteeing the required efficiency. Code is available at https://github.com/XinbangZhang/DATA-NAS 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Chang, Jianlong  |e verfasserin  |4 aut 
700 1 |a Guo, Yiwen  |e verfasserin  |4 aut 
700 1 |a Meng, Gaofeng  |e verfasserin  |4 aut 
700 1 |a Xiang, Shiming  |e verfasserin  |4 aut 
700 1 |a Lin, Zhouchen  |e verfasserin  |4 aut 
700 1 |a Pan, Chunhong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 9 vom: 01. Sept., Seite 2905-2920  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:9  |g day:01  |g month:09  |g pages:2905-2920 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3020315  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 9  |b 01  |c 09  |h 2905-2920