Anatomical Context Protects Deep Learning from Adversarial Perturbations in Medical Imaging

Deep learning has achieved impressive performance across a variety of tasks, including medical image processing. However, recent research has shown that deep neural networks are susceptible to small adversarial perturbations in the image. We study the impact of such adversarial perturbations in medi...

Description complète

Détails bibliographiques
Publié dans:Neurocomputing. - 1998. - 379(2020) vom: 28. Feb., Seite 370-378
Auteur principal: Li, Yi (Auteur)
Autres auteurs: Zhang, Huahong, Bermudez, Camilo, Chen, Yifan, Landman, Bennett A, Vorobeychik, Yevgeniy
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:Neurocomputing
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM314367047
003 DE-627
005 20250227214158.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.neucom.2019.10.085  |2 doi 
028 5 2 |a pubmed25n1047.xml 
035 |a (DE-627)NLM314367047 
035 |a (NLM)32863583 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Yi  |e verfasserin  |4 aut 
245 1 0 |a Anatomical Context Protects Deep Learning from Adversarial Perturbations in Medical Imaging 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep learning has achieved impressive performance across a variety of tasks, including medical image processing. However, recent research has shown that deep neural networks are susceptible to small adversarial perturbations in the image. We study the impact of such adversarial perturbations in medical image processing where the goal is to predict an individual's age based on a 3D MRI brain image. We consider two models: a conventional deep neural network, and a hybrid deep learning model which additionally uses features informed by anatomical context. We find that we can introduce significant errors in predicted age by adding imperceptible noise to an image, can accomplish this even for large batches of images using a single perturbation, and that the hybrid model is much more robust to adversarial perturbations than the conventional deep neural network. Our work highlights limitations of current deep learning techniques in clinical applications, and suggests a path forward 
650 4 |a Journal Article 
700 1 |a Zhang, Huahong  |e verfasserin  |4 aut 
700 1 |a Bermudez, Camilo  |e verfasserin  |4 aut 
700 1 |a Chen, Yifan  |e verfasserin  |4 aut 
700 1 |a Landman, Bennett A  |e verfasserin  |4 aut 
700 1 |a Vorobeychik, Yevgeniy  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Neurocomputing  |d 1998  |g 379(2020) vom: 28. Feb., Seite 370-378  |w (DE-627)NLM098202456  |x 0925-2312  |7 nnas 
773 1 8 |g volume:379  |g year:2020  |g day:28  |g month:02  |g pages:370-378 
856 4 0 |u http://dx.doi.org/10.1016/j.neucom.2019.10.085  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 379  |j 2020  |b 28  |c 02  |h 370-378