Video Coding for Machines : A Paradigm of Collaborative Compression and Intelligent Analytics

Video coding, which targets to compress and reconstruct the whole frame, and feature compression, which only preserves and transmits the most critical information, stand at two ends of the scale. That is, one is with compactness and efficiency to serve for machine vision, and the other is with full...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2020) vom: 28. Aug.
1. Verfasser: Duan, Ling-Yu (VerfasserIn)
Weitere Verfasser: Liu, Jiaying, Yang, Wenhan, Huang, Tiejun, Gao, Wen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM314308946
003 DE-627
005 20240229142830.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3016485  |2 doi 
028 5 2 |a pubmed24n1303.xml 
035 |a (DE-627)NLM314308946 
035 |a (NLM)32857694 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Duan, Ling-Yu  |e verfasserin  |4 aut 
245 1 0 |a Video Coding for Machines  |b A Paradigm of Collaborative Compression and Intelligent Analytics 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Video coding, which targets to compress and reconstruct the whole frame, and feature compression, which only preserves and transmits the most critical information, stand at two ends of the scale. That is, one is with compactness and efficiency to serve for machine vision, and the other is with full fidelity, bowing to human perception. The recent endeavors in imminent trends of video compression, e.g. deep learning based coding tools and end-to-end image/video coding, and MPEG-7 compact feature descriptor standards, i.e. Compact Descriptors for Visual Search and Compact Descriptors for Video Analysis, promote the sustainable and fast development in their own directions, respectively. In this paper, thanks to booming AI technology, e.g. prediction and generation models, we carry out exploration in the new area, Video Coding for Machines (VCM), arising from the emerging MPEG standardization efforts1. Towards collaborative compression and intelligent analytics, VCM attempts to bridge the gap between feature coding for machine vision and video coding for human vision. Aligning with the rising Analyze then Compress instance Digital Retina, the definition, formulation, and paradigm of VCM are given first. Meanwhile, we systematically review state-of-the-art techniques in video compression and feature compression from the unique perspective of MPEG standardization, which provides the academic and industrial evidence to realize the collaborative compression of video and feature streams in a broad range of AI applications. Finally, we come up with potential VCM solutions, and the preliminary results have demonstrated the performance and efficiency gains. Further direction is discussed as well 
650 4 |a Journal Article 
700 1 |a Liu, Jiaying  |e verfasserin  |4 aut 
700 1 |a Yang, Wenhan  |e verfasserin  |4 aut 
700 1 |a Huang, Tiejun  |e verfasserin  |4 aut 
700 1 |a Gao, Wen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2020) vom: 28. Aug.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2020  |g day:28  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3016485  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2020  |b 28  |c 08