Semantics-enhanced supervised deep autoencoder for depth image-based 3D model retrieval

Increased accuracy and affordability of depth sensors such as Kinect has created a great depth-data source for various 3D oriented applications. Specifically, 3D model retrieval is attracting attention in the field of computer vision and pattern recognition due to its numerous applications. A cross-...

Description complète

Détails bibliographiques
Publié dans:Pattern recognition letters. - 1998. - 125(2019) vom: 01. Juli, Seite 806-812
Auteur principal: Siddiqua, Ayesha (Auteur)
Autres auteurs: Fan, Guoliang
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:Pattern recognition letters
Sujets:Journal Article 3D model retrieval cross-modal retrieval deep autoencoder shape matching
LEADER 01000caa a22002652c 4500
001 NLM31428799X
003 DE-627
005 20250227212352.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.patrec.2019.08.004  |2 doi 
028 5 2 |a pubmed25n1047.xml 
035 |a (DE-627)NLM31428799X 
035 |a (NLM)32855578 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Siddiqua, Ayesha  |e verfasserin  |4 aut 
245 1 0 |a Semantics-enhanced supervised deep autoencoder for depth image-based 3D model retrieval 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Increased accuracy and affordability of depth sensors such as Kinect has created a great depth-data source for various 3D oriented applications. Specifically, 3D model retrieval is attracting attention in the field of computer vision and pattern recognition due to its numerous applications. A cross-domain retrieval approach such as depth image based 3D model retrieval has the challenges of occlusion, noise and view variability present in both query and training data. In this paper, we propose a new supervised deep autoencoder approach followed by semantic modeling to retrieve 3D shapes based on depth images. The key novelty is the two-fold feature abstraction to cope with the incompleteness and ambiguity present in the depth images. First, we develop a supervised autoencoder to extract robust features from both real depth images and synthetic ones rendered from 3D models, which are intended to balance reconstruction and classification capabilities of mix-domain data. Then semantic modeling of the supervised autoencoder features offers the next level of abstraction to cope with the incompleteness and ambiguity of the depth data. It is interesting that unlike any other pairwise model structures, we argue that cross-domain retrieval is still possible using only one single deep network trained on real and synthetic data. The experimental results on the NYUD2 and ModelNet10 datasets demonstrate that the proposed supervised method outperforms the recent approaches for cross-modal 3D model retrieval 
650 4 |a Journal Article 
650 4 |a 3D model retrieval 
650 4 |a cross-modal retrieval 
650 4 |a deep autoencoder 
650 4 |a shape matching 
700 1 |a Fan, Guoliang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Pattern recognition letters  |d 1998  |g 125(2019) vom: 01. Juli, Seite 806-812  |w (DE-627)NLM098154265  |x 0167-8655  |7 nnas 
773 1 8 |g volume:125  |g year:2019  |g day:01  |g month:07  |g pages:806-812 
856 4 0 |u http://dx.doi.org/10.1016/j.patrec.2019.08.004  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 125  |j 2019  |b 01  |c 07  |h 806-812