Plastid chaperone HSP90C guides precursor proteins to the SEC translocase for thylakoid transport

© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 71(2020), 22 vom: 31. Dez., Seite 7073-7087
1. Verfasser: Jiang, Tim (VerfasserIn)
Weitere Verfasser: Mu, Bona, Zhao, Rongmin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Chloroplast biogenesis PSII SEC translocon heat shock protein 90 molecular chaperone photomorphogenesis protein homeostasis thylakoid transport mehr... Protein Precursors SEC Translocation Channels
Beschreibung
Zusammenfassung:© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Chloroplast stromal factors involved in regulating thylakoid protein targeting are poorly understood. We previously reported that in Arabidopsis thaliana, the stromal-localized chaperone HSP90C (plastid heat shock protein 90) interacted with the nuclear-encoded thylakoid lumen protein PsbO1 (PSII subunit O isoform 1) and suggested a role for HSP90C in aiding PsbO1 thylakoid targeting. Using in organello transport assays, particularly with model substrates naturally expressed in stroma, we showed that light, exogenous ATP, and HSP90C activity were required for Sec-dependent transport of green fluorescent protein (GFP) led by the PsbO1 thylakoid targeting sequence. Using a previously identified PsbO1T200A mutant, we provided evidence that a stronger interaction between HSP90C and PsbO1 better facilitated its stroma-thylakoid trafficking. We also demonstrated that SecY1, the channel protein of the thylakoid SEC translocase, specifically interacted with HSP90C in vivo. Inhibition of the chaperone ATPase activity suppressed the association of the PsbO1GFP-HSP90C complex with SecY1. Together with analyzing the expression and accumulation of a few other thylakoid proteins that utilize the SRP, TAT, or SEC translocation pathways, we propose a model in which HSP90C forms a guiding complex that interacts with thylakoid protein precursors and assists in their specific targeting to the thylakoid SEC translocon
Beschreibung:Date Completed 14.05.2021
Date Revised 07.08.2024
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/eraa399