Self-supervised Learning of Detailed 3D Face Reconstruction

In this paper, we present an end-to-end learning framework for detailed 3D face reconstruction from a single image1. Our approach uses a 3DMM-based coarse model and a displacement map in UV-space to represent a 3D face. Unlike previous work addressing the problem, our learning framework does not req...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2020) vom: 27. Aug.
1. Verfasser: Chen, Yajing (VerfasserIn)
Weitere Verfasser: Wu, Fanzi, Wang, Zeyu, Song, Yibing, Ling, Yonggen, Bao, Linchao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article