An α-Matte Boundary Defocus Model-Based Cascaded Network for Multi-focus Image Fusion

Capturing an all-in-focus image with a single camera is difficult since the depth of field of the camera is usually limited. An alternative method to obtain the all-in-focus image is to fuse several images that are focused at different depths. However, existing multi-focus image fusion methods canno...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2020) vom: 26. Aug.
1. Verfasser: Ma, Haoyu (VerfasserIn)
Weitere Verfasser: Liao, Qingmin, Zhang, Juncheng, Liu, Shaojun, Xue, Jing-Hao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM31419150X
003 DE-627
005 20240229163221.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3018261  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM31419150X 
035 |a (NLM)32845840 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Haoyu  |e verfasserin  |4 aut 
245 1 3 |a An α-Matte Boundary Defocus Model-Based Cascaded Network for Multi-focus Image Fusion 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Capturing an all-in-focus image with a single camera is difficult since the depth of field of the camera is usually limited. An alternative method to obtain the all-in-focus image is to fuse several images that are focused at different depths. However, existing multi-focus image fusion methods cannot obtain clear results for areas near the focused/defocused boundary (FDB). In this paper, a novel α-matte boundary defocus model is proposed to generate realistic training data with the defocus spread effect precisely modeled, especially for areas near the FDB. Based on this α-matte defocus model and the generated data, a cascaded boundary-aware convolutional network termed MMF-Net is proposed and trained, aiming to achieve clearer fusion results around the FDB. Specifically, the MMF-Net consists of two cascaded subnets for initial fusion and boundary fusion. These two subnets are designed to first obtain a guidance map of FDB and then refine the fusion near the FDB. Experiments demonstrate that with the help of the new α-matte boundary defocus model, the proposed MMF-Net outperforms the state-of-the-art methods both qualitatively and quantitatively 
650 4 |a Journal Article 
700 1 |a Liao, Qingmin  |e verfasserin  |4 aut 
700 1 |a Zhang, Juncheng  |e verfasserin  |4 aut 
700 1 |a Liu, Shaojun  |e verfasserin  |4 aut 
700 1 |a Xue, Jing-Hao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2020) vom: 26. Aug.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2020  |g day:26  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3018261  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2020  |b 26  |c 08