|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM314178619 |
003 |
DE-627 |
005 |
20250227205921.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202002889
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1047.xml
|
035 |
|
|
|a (DE-627)NLM314178619
|
035 |
|
|
|a (NLM)32844520
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Lim, Kitaek
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A Large-Scale Array of Ordered Graphene-Sandwiched Chambers for Quantitative Liquid-Phase Transmission Electron Microscopy
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 07.12.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 Wiley-VCH GmbH.
|
520 |
|
|
|a Liquid-phase transmission electron microscopy (TEM) offers a real-time microscopic observation of the nanometer scale for understanding the underlying mechanisms of the growth, etching, and interactions of colloidal nanoparticles. Despite such unique capability and potential application in diverse fields of analytical chemistry, liquid-phase TEM studies rely on information obtained from the limited number of observed events. In this work, a novel liquid cell with a large-scale array of highly ordered nanochambers is constructed by sandwiching an anodic aluminum oxide membrane between graphene sheets. TEM analysis of colloidal gold nanoparticles dispersed in the liquid is conducted, employing the fabricated nanochamber array, to demonstrate the potential of the nanochamber array in quantitative liquid-phase TEM. The independent TEM observations in the multiple nanochambers confirm that the monomer attachment and coalescence processes universally govern the overall growth of nanoparticles, although individual nanoparticles follow different growth trajectories
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a anodic aluminum oxide
|
650 |
|
4 |
|a graphene liquid cells
|
650 |
|
4 |
|a in situ TEM
|
650 |
|
4 |
|a liquid-phase TEM
|
700 |
1 |
|
|a Bae, Yuna
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jeon, Sungho
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Kihwan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Byung Hyo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Joodeok
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kang, Sungsu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Heo, Taeyeong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Park, Jungwon
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lee, Won Chul
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 39 vom: 01. Okt., Seite e2002889
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:39
|g day:01
|g month:10
|g pages:e2002889
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202002889
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 39
|b 01
|c 10
|h e2002889
|