Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network approach

© 2020 Elsevier Inc. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 419(2020) vom: 15. Okt., Seite 109665
1. Verfasser: Hwang, Hyung Ju (VerfasserIn)
Weitere Verfasser: Jang, Jin Woo, Jo, Hyeontae, Lee, Jae Yong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article Artificial intelligence Asymptotic behavior of solutions Fokker-Planck equation Kinetic theory of gases
LEADER 01000caa a22002652 4500
001 NLM314075313
003 DE-627
005 20240328235700.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jcp.2020.109665  |2 doi 
028 5 2 |a pubmed24n1353.xml 
035 |a (DE-627)NLM314075313 
035 |a (NLM)32834105 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hwang, Hyung Ju  |e verfasserin  |4 aut 
245 1 0 |a Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network approach 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Elsevier Inc. All rights reserved. 
520 |a The issue of the relaxation to equilibrium has been at the core of the kinetic theory of rarefied gas dynamics. In the paper, we introduce the Deep Neural Network (DNN) approximated solutions to the kinetic Fokker-Planck equation in a bounded interval and study the large-time asymptotic behavior of the solutions and other physically relevant macroscopic quantities. We impose the varied types of boundary conditions including the inflow-type and the reflection-type boundaries as well as the varied diffusion and friction coefficients and study the boundary effects on the asymptotic behaviors. These include the predictions on the large-time behaviors of the pointwise values of the particle distribution and the macroscopic physical quantities including the total kinetic energy, the entropy, and the free energy. We also provide the theoretical supports for the pointwise convergence of the neural network solutions to the a priori analytic solutions. We use the library PyTorch, the activation function tanh between layers, and the Adam optimizer for the Deep Learning algorithm 
650 4 |a Journal Article 
650 4 |a Artificial intelligence 
650 4 |a Asymptotic behavior of solutions 
650 4 |a Fokker-Planck equation 
650 4 |a Kinetic theory of gases 
700 1 |a Jang, Jin Woo  |e verfasserin  |4 aut 
700 1 |a Jo, Hyeontae  |e verfasserin  |4 aut 
700 1 |a Lee, Jae Yong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1986  |g 419(2020) vom: 15. Okt., Seite 109665  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnns 
773 1 8 |g volume:419  |g year:2020  |g day:15  |g month:10  |g pages:109665 
856 4 0 |u http://dx.doi.org/10.1016/j.jcp.2020.109665  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 419  |j 2020  |b 15  |c 10  |h 109665