ChartSeer : Interactive Steering Exploratory Visual Analysis With Machine Intelligence

During exploratory visual analysis (EVA), analysts need to continually determine which subsequent activities to perform, such as which data variables to explore or how to present data variables visually. Due to the vast combinations of data variables and visual encodings that are possible, it is oft...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 3 vom: 10. März, Seite 1500-1513
1. Verfasser: Zhao, Jian (VerfasserIn)
Weitere Verfasser: Fan, Mingming, Feng, Mi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM314070850
003 DE-627
005 20231225151934.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2020.3018724  |2 doi 
028 5 2 |a pubmed24n1046.xml 
035 |a (DE-627)NLM314070850 
035 |a (NLM)32833636 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Jian  |e verfasserin  |4 aut 
245 1 0 |a ChartSeer  |b Interactive Steering Exploratory Visual Analysis With Machine Intelligence 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 31.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a During exploratory visual analysis (EVA), analysts need to continually determine which subsequent activities to perform, such as which data variables to explore or how to present data variables visually. Due to the vast combinations of data variables and visual encodings that are possible, it is often challenging to make such decisions. Further, while performing local explorations, analysts often fail to attend to the holistic picture that is emerging from their analysis, leading them to improperly steer their EVA. These issues become even more impactful in the real world analysis scenarios where EVA occurs in multiple asynchronous sessions that could be completed by one or more analysts. To address these challenges, this work proposes ChartSeer, a system that uses machine intelligence to enable analysts to visually monitor the current state of an EVA and effectively identify future activities to perform. ChartSeer utilizes deep learning techniques to characterize analyst-created data charts to generate visual summaries and recommend appropriate charts for further exploration based on user interactions. A case study was first conducted to demonstrate the usage of ChartSeer in practice, followed by a controlled study to compare ChartSeer's performance with a baseline during EVA tasks. The results demonstrated that ChartSeer enables analysts to adequately understand current EVA status and advance their analysis by creating charts with increased coverage and visual encoding diversity 
650 4 |a Journal Article 
700 1 |a Fan, Mingming  |e verfasserin  |4 aut 
700 1 |a Feng, Mi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 28(2022), 3 vom: 10. März, Seite 1500-1513  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:3  |g day:10  |g month:03  |g pages:1500-1513 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2020.3018724  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 3  |b 10  |c 03  |h 1500-1513