|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM314041273 |
003 |
DE-627 |
005 |
20231225151857.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.0c01525
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1046.xml
|
035 |
|
|
|a (DE-627)NLM314041273
|
035 |
|
|
|a (NLM)32830502
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kannaka, Kento
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Inverse Electron Demand Diels-Alder Reactions in the Liposomal Membrane Accelerates Release of the Encapsulated Drugs
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 21.06.2021
|
500 |
|
|
|a Date Revised 21.06.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Bio-orthogonal inverse electron demand Diels-Alder (IEDDA) reactions between liposomes containing a tetrazine-based (Tz) compound and 2-norbornene (2-NB) could be a novel trigger for accelerating drug release from the liposomes via temporary membrane destabilization, as shown in our previous report. Herein, we evaluated the in vitro drug release using NB derivatives with carboxyl groups [5-norbornene-2-carboxylic acid (NBCOOH) and 5-norbornene-2,3-dicarboxylic acid (NB(COOH)2)] to investigate the effects of substituents at the NB backbone on the drug release rate. First, POTz-liposome composed of a Tz compound (2-hexadecyl-N-(6-(6-(pyridin-2-yl)-1,2,4,5-tetrazin-3-yl)pyridin-3-yl)octadecanamide) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) were prepared. The mass spectrometry analysis revealed the binding of NB derivatives to the Tz compound via the IEDDA reaction after the POTz-liposome reacted with the NB derivatives. Indium-111-labeled diethylenetriaminepentaacetic acid (111In-DTPA) was encapsulated inside the liposomes, and the drug release rate was quantified by measuring radioactivity. At 24 h after incubation with 2-NB, NBCOOH, and NB(COOH)2, the release rates of 111In-DTPA from POTz-liposome were 21.0, 80.8, and 23.3%, respectively, which were significantly higher than those of POTz-liposome that was not treated with NB derivatives (4.2%), indicating the involvement of the IEDDA reaction for prompting drug release. Additionally, a thermodynamic evaluation using Langmuir monolayers was conducted to explore the mechanism of the accelerated drug release. An increase in membrane fluidity and a reduction in intermolecular repulsion between POPC and the Tz compound were observed after the reaction with NB derivatives, especially for NBCOOH. Thus, the IEDDA reaction in the liposomal membrane could be a potent trigger for accelerating the release of encapsulated drugs by regulating membrane fluidity and intermolecular repulsion in the liposomal membrane
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Liposomes
|2 NLM
|
700 |
1 |
|
|a Sano, Kohei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nakahara, Hiromichi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Munekane, Masayuki
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hagimori, Masayori
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yamasaki, Toshihide
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mukai, Takahiro
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 36(2020), 36 vom: 15. Sept., Seite 10750-10755
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2020
|g number:36
|g day:15
|g month:09
|g pages:10750-10755
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.0c01525
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2020
|e 36
|b 15
|c 09
|h 10750-10755
|