Rapid Growth of Colloidal Crystal Films from the Concentrated Aqueous Ethanol Suspension

Developing a rapid fabrication of colloidal crystal film is one of the technical issues to apply to wide and various fields. We have been investigating a drying process of colloidal aqueous ethanol (EtOH) suspension formed by electrophoretic deposition (EPD). Here, the detailed formation mechanism o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 36 vom: 15. Sept., Seite 10683-10689
1. Verfasser: T H Tran, Giang (VerfasserIn)
Weitere Verfasser: Koike, Masaki, Uchikoshi, Tetsuo, Fudouzi, Hiroshi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Developing a rapid fabrication of colloidal crystal film is one of the technical issues to apply to wide and various fields. We have been investigating a drying process of colloidal aqueous ethanol (EtOH) suspension formed by electrophoretic deposition (EPD). Here, the detailed formation mechanism of the colloidal crystal films with the closest packing structure was investigated by optical microscope and spectroscopy. The growth mechanism from the colloidal suspension to the colloidal crystal film was found to consist of four stages. In the first stage, concentrated colloidal suspension changed to order structure, i.e., nonclosely packed colloidal crystal by Alder phase transition. After this crystallization, we observed Bragg's diffraction peak and structural color. In the second stage, the diffraction peak shifts toward the shorter-wavelength direction (blue shift) due to the reduction of the interparticle distance of the nonclosely packed colloidal crystal. Finally, this peak shift continued until the closely packed colloidal crystal film was formed. In the third stage, the diffraction peak kept almost a similar wavelength due to the liquid film of aqueous EtOH covering on the colloidal crystal film. In the fourth stage, the colloidal crystal film changed from wet to dry condition. The structural color changes from green to blue by the evaporation of the solvent from the interspace of the colloidal crystal film. This color change is explained by the change in the refractive index of the interparticle medium from solvent to air. One of the key findings in our process is a rapid crystal growth using concentrated colloid aqueous EtOH suspension. Drying the concentrated suspension formed a closely packed colloidal crystal film within 55 s. This process has the potential for high-speed deposition of the colloidal crystalline thin films
Beschreibung:Date Revised 15.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.0c01048