Revisiting Anchor Mechanisms for Temporal Action Localization

Most of the current action localization methods follow an anchor-based pipeline: depicting action instances by pre-defined anchors, learning to select the anchors closest to the ground truth, and predicting the confidence of anchors with refinements. Pre-defined anchors set prior about the location...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2020) vom: 19. Aug.
1. Verfasser: Yang, Le (VerfasserIn)
Weitere Verfasser: Peng, Houwen, Zhang, Dingwen, Fu, Jianlong, Han, Junwei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM313875499
003 DE-627
005 20240229163207.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3016486  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM313875499 
035 |a (NLM)32813656 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Le  |e verfasserin  |4 aut 
245 1 0 |a Revisiting Anchor Mechanisms for Temporal Action Localization 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Most of the current action localization methods follow an anchor-based pipeline: depicting action instances by pre-defined anchors, learning to select the anchors closest to the ground truth, and predicting the confidence of anchors with refinements. Pre-defined anchors set prior about the location and duration for action instances, which facilitates the localization for common action instances but limits the flexibility for tackling action instances with drastic varieties, especially for extremely short or extremely long ones. To address this problem, this paper proposes a novel anchor-free action localization module that assists action localization by temporal points. Specifically, this module represents an action instance as a point with its distances to the starting boundary and ending boundary, alleviating the pre-defined anchor restrictions in terms of action localization and duration. The proposed anchor-free module is capable of predicting the action instances whose duration is either extremely short or extremely long. By combining the proposed anchor-free module with a conventional anchor-based module, we propose a novel action localization framework, called A2Net. The cooperation between anchor-free and anchor-based modules achieves superior performance to the state-of-the-art on THUMOS14 (45.5% vs. 42.8%). Furthermore, comprehensive experiments demonstrate the complementarity between the anchor-free and the anchor-based module, making A2Net simple but effective 
650 4 |a Journal Article 
700 1 |a Peng, Houwen  |e verfasserin  |4 aut 
700 1 |a Zhang, Dingwen  |e verfasserin  |4 aut 
700 1 |a Fu, Jianlong  |e verfasserin  |4 aut 
700 1 |a Han, Junwei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2020) vom: 19. Aug.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2020  |g day:19  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3016486  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2020  |b 19  |c 08