Zero-Shot Image Dehazing

In this paper, we study two less-touched challenging problems in single image dehazing neural networks, namely, how to remove haze from a given image in an unsupervised and zeroshot manner. To the ends, we propose a novel method based on the idea of layer disentanglement by viewing a hazy image as t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2020) vom: 18. Aug.
1. Verfasser: Li, Boyun (VerfasserIn)
Weitere Verfasser: Gou, Yuanbiao, Liu, Jerry Zitao, Zhu, Hongyuan, Zhou, Joey Tianyi, Peng, Xi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM313839697
003 DE-627
005 20240229163205.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3016134  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM313839697 
035 |a (NLM)32809939 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Boyun  |e verfasserin  |4 aut 
245 1 0 |a Zero-Shot Image Dehazing 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a In this paper, we study two less-touched challenging problems in single image dehazing neural networks, namely, how to remove haze from a given image in an unsupervised and zeroshot manner. To the ends, we propose a novel method based on the idea of layer disentanglement by viewing a hazy image as the entanglement of several "simpler" layers, i.e., a hazy-free image layer, transmission map layer, and atmospheric light layer. The major advantages of the proposed ZID are two-fold. First, it is an unsupervised method that does not use any clean images including hazy-clean pairs as the ground-truth. Second, ZID is a "zero-shot" method, which just uses the observed single hazy image to perform learning and inference. In other words, it does not follow the conventional paradigm of training deep model on a large scale dataset. These two advantages enable our method to avoid the labor-intensive data collection and the domain shift issue of using the synthetic hazy images to address the real-world images. Extensive comparisons show the promising performance of our method compared with 15 approaches in the qualitative and quantitive evaluations. The source code could be found at www.pengxi.me 
650 4 |a Journal Article 
700 1 |a Gou, Yuanbiao  |e verfasserin  |4 aut 
700 1 |a Liu, Jerry Zitao  |e verfasserin  |4 aut 
700 1 |a Zhu, Hongyuan  |e verfasserin  |4 aut 
700 1 |a Zhou, Joey Tianyi  |e verfasserin  |4 aut 
700 1 |a Peng, Xi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2020) vom: 18. Aug.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2020  |g day:18  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3016134  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2020  |b 18  |c 08