|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM313839697 |
003 |
DE-627 |
005 |
20240229163205.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2020.3016134
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1308.xml
|
035 |
|
|
|a (DE-627)NLM313839697
|
035 |
|
|
|a (NLM)32809939
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Boyun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Zero-Shot Image Dehazing
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.02.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a In this paper, we study two less-touched challenging problems in single image dehazing neural networks, namely, how to remove haze from a given image in an unsupervised and zeroshot manner. To the ends, we propose a novel method based on the idea of layer disentanglement by viewing a hazy image as the entanglement of several "simpler" layers, i.e., a hazy-free image layer, transmission map layer, and atmospheric light layer. The major advantages of the proposed ZID are two-fold. First, it is an unsupervised method that does not use any clean images including hazy-clean pairs as the ground-truth. Second, ZID is a "zero-shot" method, which just uses the observed single hazy image to perform learning and inference. In other words, it does not follow the conventional paradigm of training deep model on a large scale dataset. These two advantages enable our method to avoid the labor-intensive data collection and the domain shift issue of using the synthetic hazy images to address the real-world images. Extensive comparisons show the promising performance of our method compared with 15 approaches in the qualitative and quantitive evaluations. The source code could be found at www.pengxi.me
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Gou, Yuanbiao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Jerry Zitao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Hongyuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Joey Tianyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Peng, Xi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g PP(2020) vom: 18. Aug.
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:PP
|g year:2020
|g day:18
|g month:08
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2020.3016134
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d PP
|j 2020
|b 18
|c 08
|