Nanoscale-Specific Reaction in a Precursor Film : Mixing Sodium Carbonate, Calcium Chloride, and an Organic Thiol to Produce Crystals of Calcium sulfate

The ultrathin precursor film surrounding droplets of liquid on a solid surface is used here as a confined reaction medium in order to drive a reaction that would not occur in bulk fluid. Sodium carbonate and calcium chloride mixed together in the presence of the organic thiol dithiothreitol (DTT) pr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 36(2020), 35 vom: 08. Sept., Seite 10490-10493
1. Verfasser: Melzak, Kathryn A (VerfasserIn)
Weitere Verfasser: Laye, Fabrice, Heißler, Stefan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:The ultrathin precursor film surrounding droplets of liquid on a solid surface is used here as a confined reaction medium in order to drive a reaction that would not occur in bulk fluid. Sodium carbonate and calcium chloride mixed together in the presence of the organic thiol dithiothreitol (DTT) produced crystals of gypsum, or calcium sulfate, instead of the otherwise expected calcium carbonate. The possible sources of sulfate in the system are contaminants in the DTT or the oxidation product of the DTT sulfhydryl. The amount of gypsum produced implies that contaminants do not account for the total sulfate present in the system, suggesting that the DTT could be oxidized. The reaction quotient may be skewed in favor of this unexpected reaction by a combination of efficient removal of sulfate by precipitation and the concentration of DTT at the leading edge of the precursor film through the coffee-ring effect during a brief drying step
Beschreibung:Date Completed 06.10.2020
Date Revised 06.10.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.0c01653