A Non-Invasive Nanoprobe for In Vivo Photoacoustic Imaging of Vulnerable Atherosclerotic Plaque
© 2020 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 38 vom: 15. Sept., Seite e2000037 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article foam cells in vivo photoacoustic imaging non-invasive nanoprobes osteopontin antibody vulnerable atherosclerotic plaque Osteopontin 106441-73-0 |
Zusammenfassung: | © 2020 Wiley-VCH GmbH. Vulnerable atherosclerotic (AS) plaque is the major cause of cardiovascular death. However, clinical methods cannot directly identify the vulnerable AS plaque at molecule level. Herein, osteopontin antibody (OPN Ab) and NIR fluorescence molecules of ICG co-assembled Ti3 C2 nanosheets are reported as an advanced nanoprobe (OPN Ab/Ti3 C2 /ICG) with enhanced photoacoustic (PA) performance for direct and non-invasive in vivo visual imaging of vulnerable AS plaque. The designed OPN Ab/Ti3 C2 /ICG nanoprobes successfully realize obvious NIR fluorescence imaging toward foam cells as well as the vulnerable AS plaque slices. After intravenous injection of OPN Ab/Ti3 C2 /ICG nanoprobes into AS model mice, in vivo imaging results show a significantly enhanced PA signal in the aortic arch accumulated with vulnerable plaque, well indicating the remarkable feasibility of OPN Ab/Ti3 C2 /ICG nanoprobes to distinguish the vulnerable AS plaque. The proposed OPN Ab/Ti3 C2 /ICG nanoprobes not only overcome the clinical difficulty to differentiate vulnerable plaque, but also achieve the non-invasively specific in vivo imaging of vulnerable AS plaque at molecule level, greatly promoting the innovation of cardiovascular diagnosis technology |
---|---|
Beschreibung: | Date Completed 11.08.2021 Date Revised 11.08.2021 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202000037 |