Pollen analysis using multispectral imaging flow cytometry and deep learning

© 2020 The Authors New Phytologist © 2020 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 229(2021), 1 vom: 14. Jan., Seite 593-606
1. Verfasser: Dunker, Susanne (VerfasserIn)
Weitere Verfasser: Motivans, Elena, Rakosy, Demetra, Boho, David, Mäder, Patrick, Hornick, Thomas, Knight, Tiffany M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't convolutional neural networks deep learning multispectral imaging flow cytometry pollen pollinator species identification
LEADER 01000naa a22002652 4500
001 NLM313783616
003 DE-627
005 20231225151319.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.16882  |2 doi 
028 5 2 |a pubmed24n1045.xml 
035 |a (DE-627)NLM313783616 
035 |a (NLM)32803754 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dunker, Susanne  |e verfasserin  |4 aut 
245 1 0 |a Pollen analysis using multispectral imaging flow cytometry and deep learning 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.05.2021 
500 |a Date Revised 14.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2020 The Authors New Phytologist © 2020 New Phytologist Trust. 
520 |a Pollen identification and quantification are crucial but challenging tasks in addressing a variety of evolutionary and ecological questions (pollination, paleobotany), but also for other fields of research (e.g. allergology, honey analysis or forensics). Researchers are exploring alternative methods to automate these tasks but, for several reasons, manual microscopy is still the gold standard. In this study, we present a new method for pollen analysis using multispectral imaging flow cytometry in combination with deep learning. We demonstrate that our method allows fast measurement while delivering high accuracy pollen identification. A dataset of 426 876 images depicting pollen from 35 plant species was used to train a convolutional neural network classifier. We found the best-performing classifier to yield a species-averaged accuracy of 96%. Even species that are difficult to differentiate using microscopy could be clearly separated. Our approach also allows a detailed determination of morphological pollen traits, such as size, symmetry or structure. Our phylogenetic analyses suggest phylogenetic conservatism in some of these traits. Given a comprehensive pollen reference database, we provide a powerful tool to be used in any pollen study with a need for rapid and accurate species identification, pollen grain quantification and trait extraction of recent pollen 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a convolutional neural networks 
650 4 |a deep learning 
650 4 |a multispectral imaging flow cytometry 
650 4 |a pollen 
650 4 |a pollinator 
650 4 |a species identification 
700 1 |a Motivans, Elena  |e verfasserin  |4 aut 
700 1 |a Rakosy, Demetra  |e verfasserin  |4 aut 
700 1 |a Boho, David  |e verfasserin  |4 aut 
700 1 |a Mäder, Patrick  |e verfasserin  |4 aut 
700 1 |a Hornick, Thomas  |e verfasserin  |4 aut 
700 1 |a Knight, Tiffany M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g 229(2021), 1 vom: 14. Jan., Seite 593-606  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:229  |g year:2021  |g number:1  |g day:14  |g month:01  |g pages:593-606 
856 4 0 |u http://dx.doi.org/10.1111/nph.16882  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 229  |j 2021  |e 1  |b 14  |c 01  |h 593-606