Research challenges and opportunities for using big data in global change biology

© 2020 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 26(2020), 11 vom: 04. Nov., Seite 6040-6061
1. Verfasser: Xia, Jianyang (VerfasserIn)
Weitere Verfasser: Wang, Jing, Niu, Shuli
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Review Earth system model big data global change biology machine learning model uncertainty
LEADER 01000naa a22002652 4500
001 NLM313739811
003 DE-627
005 20231225151223.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15317  |2 doi 
028 5 2 |a pubmed24n1045.xml 
035 |a (DE-627)NLM313739811 
035 |a (NLM)32799353 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xia, Jianyang  |e verfasserin  |4 aut 
245 1 0 |a Research challenges and opportunities for using big data in global change biology 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.04.2021 
500 |a Date Revised 31.05.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2020 John Wiley & Sons Ltd. 
520 |a Global change biology has been entering a big data era due to the vast increase in availability of both environmental and biological data. Big data refers to large data volume, complex data sets, and multiple data sources. The recent use of such big data is improving our understanding of interactions between biological systems and global environmental changes. In this review, we first explore how big data has been analyzed to identify the general patterns of biological responses to global changes at scales from gene to ecosystem. After that, we investigate how observational networks and space-based big data have facilitated the discovery of emergent mechanisms and phenomena on the regional and global scales. Then, we evaluate the predictions of terrestrial biosphere under global changes by big modeling data. Finally, we introduce some methods to extract knowledge from big data, such as meta-analysis, machine learning, traceability analysis, and data assimilation. The big data has opened new research opportunities, especially for developing new data-driven theories for improving biological predictions in Earth system models, tracing global change impacts across different organismic levels, and constructing cyberinfrastructure tools to accelerate the pace of model-data integrations. These efforts will uncork the bottleneck of using big data to understand biological responses and adaptations to future global changes 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a Earth system model 
650 4 |a big data 
650 4 |a global change biology 
650 4 |a machine learning 
650 4 |a model uncertainty 
700 1 |a Wang, Jing  |e verfasserin  |4 aut 
700 1 |a Niu, Shuli  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 26(2020), 11 vom: 04. Nov., Seite 6040-6061  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:26  |g year:2020  |g number:11  |g day:04  |g month:11  |g pages:6040-6061 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15317  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2020  |e 11  |b 04  |c 11  |h 6040-6061