Fabrication of Elastic Macroporous Polymers with Enhanced Oil Absorbability and Antiwaxing Performance

Porous polymers are of great interest in potential energy storage and environmental remediation applications. However, traditional fabrication methods are either time-consuming or energy-consuming and deteriorate the mechanical strength of polymer materials. In this study, polymerization-induced pha...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 36 vom: 15. Sept., Seite 10794-10802
1. Verfasser: Wang, Guangyan (VerfasserIn)
Weitere Verfasser: Zhao, Tianyi, Chen, Lie, Liu, Kesong, Fang, Ruochen, Liu, Mingjie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Porous polymers are of great interest in potential energy storage and environmental remediation applications. However, traditional fabrication methods are either time-consuming or energy-consuming and deteriorate the mechanical strength of polymer materials. In this study, polymerization-induced phase separation was used to realize the template-free fabrication of superflexible macroporous polymers. Since the solvent is also used as a porogen, this method can be widely used to synthesize several porous polymers by carefully choosing the solvent and monomer. Compared to nonstructured polymers, the prepared macroporous polymers exhibited enhanced mechanical strength, superflexibility, multicompressibility, and bending properties. Along with hydrophobicity/oleophilicity and macroporous structures, the as-prepared porous polymers demonstrated controllable oil absorbability and release; furthermore, after infusing with lubrication liquid, these materials can be used as antiwaxing materials. The elastic porous polymers prepared using this simple and universal method show great potential for various applications, including controlled drug release, antiwaxing, and lubrication
Beschreibung:Date Revised 15.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.0c01655