s-LWSR : Super Lightweight Super-Resolution Network

In recent years, deep-based models have achieved great success in the field of single image super-resolution (SISR), where tremendous parameters are always needed to obtain a satisfying performance. However, the high computational complexity extremely limits its applications to some mobile devices t...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2020) vom: 13. Aug.
Auteur principal: Li, Biao (Auteur)
Autres auteurs: Wang, Bo, Liu, Jiabin, Qi, Zhiquan, Shi, Yong
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM313653267
003 DE-627
005 20250227190419.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3014953  |2 doi 
028 5 2 |a pubmed25n1045.xml 
035 |a (DE-627)NLM313653267 
035 |a (NLM)32790629 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Biao  |e verfasserin  |4 aut 
245 1 0 |a s-LWSR  |b Super Lightweight Super-Resolution Network 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a In recent years, deep-based models have achieved great success in the field of single image super-resolution (SISR), where tremendous parameters are always needed to obtain a satisfying performance. However, the high computational complexity extremely limits its applications to some mobile devices that possess less computing and storage resources. To address this problem, in this paper, we propose a flexibly adjustable super lightweight SR network: s-LWSR. Firstly, in order to efficiently abstract features from the low resolution image, we design a high-efficient U-shape based block, where an information pool is constructed to mix multi-level information from the first half part of the pipeline. Secondly, a compression mechanism based on depth-wise separable convolution is employed to further reduce the numbers of parameters with negligible performance degradation. Thirdly, by revealing the specific role of activation in deep models, we remove several activation layers in our SR model to retain more information, thus leading to the final performance improvement. Extensive experiments show that our s-LWSR, with limited parameters and operations, can achieve similar performance compared with other cumbersome DL-SR methods 
650 4 |a Journal Article 
700 1 |a Wang, Bo  |e verfasserin  |4 aut 
700 1 |a Liu, Jiabin  |e verfasserin  |4 aut 
700 1 |a Qi, Zhiquan  |e verfasserin  |4 aut 
700 1 |a Shi, Yong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2020) vom: 13. Aug.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:PP  |g year:2020  |g day:13  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3014953  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2020  |b 13  |c 08