Gelation, Liquid Crystalline Behavior, and Ionic Conductivity of Nanocomposite Ionogel Electrolytes Based On Attapulgite Nanorods

Anisotropic nanoparticles and their dispersions have attracted much attention because of their distinguished characteristics and promising applications. In this study, the novel liquid crystalline nanocomposite ionogel electrolyte materials based on anisotropic nanoparticles of attapulgite (ATP) hav...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 33 vom: 25. Aug., Seite 9818-9826
1. Verfasser: Zhang, Jianxin (VerfasserIn)
Weitere Verfasser: Liu, Jiahang, Wang, Zihao, Hao, Shuai, Song, Hongzan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Anisotropic nanoparticles and their dispersions have attracted much attention because of their distinguished characteristics and promising applications. In this study, the novel liquid crystalline nanocomposite ionogel electrolyte materials based on anisotropic nanoparticles of attapulgite (ATP) have been prepared. The gelation, liquid crystalline (LC) behavior, thermal stability, and ionic conductivity were systematically investigated. Rheological, polarized optical microscopy (POM), and small-angle X-ray scattering (SAXS) measurements demonstrated that these liquid crystalline ionogels showed a two-step mechanism consisting of gelation and subsequent reorganization of the gel. Interestingly, the obtained ionogel electrolytes were very stable and LC gel structures were not destroyed even though the temperature was as high as 200 °C. Furthermore, these ionogels possessed outstanding thermal stability and the decomposition temperature exceeded 400 °C. Remarkably, the LC nanocomposite ionogel electrolytes exhibited high room temperature ionic conductivity and the value still exceeded 1.0 × 10-3 S/cm even when the ATP concentration up to 30 wt %. These novel findings are very useful for the fabrication of high temperature resistant electrochemical devices and liquid crystalline nanocomposite materials
Beschreibung:Date Revised 25.08.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.0c01381